HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY PART LOTS 32, 33, AND 34, CONCESSION 6 TOWNSHIP OF BRIGHTON COUNTY OF NORTHUMBERLAND, ONTARIO

Prepared for: St. Mary's Cement Inc. (Canada)

March 2009

File 051777.00

Distribution: 2 c St. Marys Cement Inc. (Canada) 1 c MHBC Planning 1 c File

6/24/2009 9:10 AM H:\Proj\05\1777\00\Wp\VGM-R Hydrog Study Codrington_PDF.doc

March 30, 2009

St. Marys Cement Inc. (Canada)55 Industrial StreetToronto, OntarioM4G 3W9

Attention: Ms. Melanie Horton, MCIP, RPP Property and Resource Manager

Dear Sirs:

Re: Hydrogeological Study
St. Marys Cement Inc. (Canada) Codrington Property
Part of Lots 32, 33 and 34, Concession 6
Township of Brighton
County of Northumberland, Ontario
File 051777.00

We are pleased to submit our final report for the above-noted project. The report provides the results of the Hydrogeological Study for the Codrington Property that is proposed to be operated as a sand and gravel pit above the groundwater table.

The results of the Hydrogeological Study, which include the data of the May 2008 monitoring event, indicates that the above water table pit development and operations will not impact local groundwater or surface water resources. Therefore, a Level 2 Hydrogeological Study is not required. A performance monitoring program is outlined in Section 4.0 of the report.

Thank you for the opportunity to complete the project. Please contact us if you have any questions.

Yours truly, JAGGER HIMS LIMITED

ami. Baselon

Jason T. Balsdon, M.A.Sc., P.Eng. Consulting EngineerJTB:nah

Environmental Consulting Engineers

1091 Gorham Street, Suite 301 Newmarket, Ontario Canada L3Y 8X7

> Tel 905 853-3303 800 263-7419 Fax 905 853-1759

Environmental Consulting Engineers

1091 Gorham Street, Suite 301 Newmarket, Ontario Canada L3Y 8X7

> Tel 905 853-3303 800 263-7419 Fax 905 853-1759

MEMORANDUM

TO:	Mr. Mike Le Breton, B.E.S. Mr. Amarjit Sandhu
COPY:	Ms. Melanie Horton, MCIP, RPP
FROM:	Jason Balsdon, P.Eng. Vyacheslav Magmedov, P.Geo.
DATE:	May 15, 2009
SUBJECT:	Hydrogeological Study St. Marys Cement Inc. (Canada) Codrington Property File 051777.00

Based on discussions between the MNR representative and CBM, which was held on May 8, 2009, it is understood that the groundwater performance monitoring program will be implemented as outlined in Section 4.0 of Jagger Hims Limited report during the Codrington Pit development.

This memorandum is an addendum to our report dated March 30, 2009 and does not affect the general summary/recommendations of the report. Please call if you have any questions.

VGM:lnc

EXECUTIVE SUMMARY

St. Marys Cement Inc. (Canada), known locally as CBM Aggregates, is proposing to submit a Category 3 application under the Aggregate Resources Act (ARA) and its associated Provincial Standards. Approval for the application will permit the establishment of an above water table pit on lands referred to as the "Codrington Property," located east of the Village of Codrington, approximately 12 km north of Brighton. The property includes the land south of the Ontario Hydro Powerlines in Parts of Lot 32, 33, and 34, Concession 6 of the Township of Brighton (site).

To confirm the location of the seasonal high water level and to evaluate that the abovewater extraction would have no adverse effects on the local groundwater and surface water resources, a Hydrogeological Study was undertaken by Jagger Hims Limited to meet and exceed the Provincial requirements as established by the ARA Provincial Standards. In addition, this Hydrogeological Study also addressed the requirements of the Township of Brighton Official Plan with respect to hydrogeological (groundwater) and hydrological (surface water) issues.

A sand and gravel unit (Unit 2) occurs across the southern portion of the site and achieves a confirmed maximum thickness of about 25 m within the south-central portion of the site. Unit 2 was not detected within the northwestern portion of the site. A unit of sand with minor gravel (Unit 3) occurs below Unit 2 and also extends below the northwestern portion of the site. Silt to silty sand (Unit 1) occurs at surface within the northwestern portion of the site and was confirmed to increase in thickness toward the northwest to a depth of about 17 m. This Unit 1 was not detected within the southern and eastern portions of the site.

The site is located within a high area of land that forms a regional recharge area for dominantly confined aquifers in the surrounding lower lying areas. Most water wells are developed in the confined aquifers at a depth greater than 15 m below ground surface. The

quantity of water available for domestic water supply wells will not be negatively affected by the pit development as the recharge to the aquifer developed by the local water wells is predicted to increase. In addition, there will be no negative impact from pit development on groundwater quality owing to the nature of the development, the on-site environmental management processes, the available attenuation capacity within the water table aquifer around the site, and since most water wells around the site are developed within an aquifer that is confined by overlying fine-grained deposits such as clay or hardpan.

Development of the site as an above the water table operation under a Category 3 Application will provide from 20 m to 30 m of available material west of the road allowance between Lots 32 and 33 and about 5 m to 25 m of material east of the road allowance. Within the northwestern portion of the Western Parcel the thickness of sand and gravel resources will range from approximately 14 m to approximately 17 m due to the occurrence of surficial silty deposits (Unit 1). Most of these surficial silty deposits are located within the area not proposed for extraction.

The base of excavation will be 1.5 m above the May 2008 groundwater table, which had an elevation of ± 175 m above sea level (asl) within the central portion of Lots 33 and 32, falling off to below ± 150 m asl in the northwest, ± 155 m asl in the northeast, ± 165 m asl in the southeast, and ± 160 m asl in the southwest. No negative effects to groundwater quality or quantity are predicted.

It is calculated that between about 11 and 14 million cubic metres of suitable material (Units 2 and 3) are available for extraction for the proposed pit design.

There is no notable groundwater contribution to the wetland within the north-central portion of the western portion of the site. Water accumulates within the wetland area during the spring and fall months as a result of surface water runoff, and slowly infiltrates through the underlying silt. As a result, temporary perched groundwater conditions occur

in this area. Pit development will reduce the amount of runoff to the wetland, which will reduce the depth and duration of ponded water (refer to Natural Environment report prepared by AECOM (formerly Gartner Lee Limited((2008) for further details). However, the net infiltration to groundwater in this area will be maintained.

A reduction in surface water runoff on the site will occur, but no negative effects to off-site surface watercourses are predicted as a result of increased infiltration. The contribution of groundwater baseflow to the watercourses will continue.

Based on the findings of the Hydrogeological Study, the above water table pit development and operations will not affect groundwater or surface water resources. A performance monitoring program is outlined in Section 4.0 of the report.

TABLE OF CONTENTS

Letter of Transmittal Memorandum

Executive Summary

1.0	INT	RODUCTION	
	1.1	BACKGROUND	1
	1.2	OBJECTIVES AND SCOPE	2
	1.3	METHODOLOGY	2
2.0	HYI	DROGEOLOGIC SETTING	4
	2.1	TOPOGRAPHY AND PHYSIOGRAPHY	4
	2.2	GEOLOGY	6
		2.2.1 Regional Geology	6
		2.2.2 Local Geology	6
	2.3	GROUNDWATER SETTING	8
		2.3.1 Regional Groundwater Setting	8
		2.3.2 Site Hydrogeology	9
	2.4	SURFACE WATER	10
	2.5	CLIMATIC WATER BUDGET	11
	2.6	SUBCATCHMENT ANALYSIS	12
3.0	IMP	PACT ASSESSMENT	14
	3.1	PROPOSED OPERATIONS	14
	3.2	GROUNDWATER ASSESSMENT	17
		3.2.1 Effects on Local Water Wells	
	3.3	SURFACE WATER ASSESSMENT	19
4.0	PER	RFORMANCE MONITORING PROGRAM	
	4.1	CONTINGENCY MEASURES	21
5.0	CON	NCLUSIONS AND RECOMMENDATIONS	
6.0	REF	FERENCES	

TABLE OF CONTENTS (Cont'd)

FIGURES

- FIGURE 1 LOCATION MAP
- FIGURE 2 JAGGER HIMS LIMITED MONITORING WELL/MOE WATER WELL LOCATIONS
- FIGURE 3 CROSS SECTION A-A'
- FIGURE 4 CROSS SECTION B-B'
- FIGURE 5 SITE PLAN

TABLE 1

- FIGURE 6 CROSS SECTION C-C'
- FIGURE 7 CROSS SECTION D-D'
- FIGURE 8 CROSS-SECTION E-E'
- FIGURE 9 WATER TABLE CONFIGURATIONS APRIL 2007
- FIGURE 10 SUBCATCHMENTS DELINEATION
- FIGURE B-1 HISTORICAL GROUNDWATER DEPTH

SITE WATER BALANCE

FIGURE B-2 HISTORICAL STATIC GROUNDWATER LEVELS

TABLES

TABLE A-1	MOE WATER WELL CO-ORDINATES	APPENDIX A
TABLE A-2	MOE WATER WELL RECORDS	APPENDIX A
TABLE A-3	NEW WATER WELL A027288 DESCRIPTION	APPENDIX A
TABLE B-1	MONITOR CONSTRUCTION DETAILS	APPENDIX B
TABLE B-2	GROUNDWATER ELEVATIONS	APPENDIX B
TABLE C-1	CLIMATIC WATER BUDGET – 1971-2000	APPENDIX C
TABLE C-2	CANADIAN CLIMATE NORMALS – 1971-2000	APPENDIX C
TABLE C-3	PRIMARY DATA FOR SITE WATER BALANCE	APPENDIX C

APPENDICES

APPENDIX A	GEOLOGIC DETAILS
APPENDIX B	GROUNDWATER DETAILS
APPENDIX C	CLIMATIC AND SUBCATCHMENTS DETAILS

1.0 INTRODUCTION

1.1 BACKGROUND

St. Marys Cement Inc. (Canada), known locally as CBM Aggregates, is proposing to open a sand and gravel pit, to be operated above the water table, on lands referred to as the "Codrington Property", located east of the Village of Codrington, approximately 12 km north of the Town of Brighton as shown on Figure 1. The property encompasses lands to the south of Ontario Hydro power-lines in Parts of Lots 32, 33, and 34, Concession 6, Township of Brighton (site).

Applications under the Aggregate Resources Act (ARA) and its Provincial Standards, as well as the Municipality of Brighton Official Plan and Zoning By-law, are required to open the proposed pit. Jagger Hims Limited has completed this Hydrogeological Study to provide the necessary hydrogeological (groundwater), hydrological (surface water), and geological information as required by the Provincial ARA application and municipal planning applications. The study was prepared essentially in accordance with the guidelines for a Hydrogeological Level 1 Technical Report, in accordance with the Aggregate Resources of Ontario Provincial Standards (AROPS). A Level 1 Report is mandatory for ARA licence applications where extraction is proposed from below the level of the water table. In the case of the Codrington Property, the pit is to be operated above the water table. Accordingly, this study exceeds the normal information requirements necessary under Provincial and municipal approval processes.

As part of this investigation, a number of boreholes were drilled and five monitoring wells installed, designated as BH05-2, BH05-18, BH05-19, BH05-20, and BH06-1. The borehole investigation determined that granular aggregate materials of economically viable quality/quantity exist above the water table at the site, to a maximum depth of approximately 24 to 25 metres below ground surface at the southwest portion of the site,

and approximately 11 metres below ground surface at the southeast portion. The pit operation would remain above the water table at these depths.

1.2 OBJECTIVES AND SCOPE

The primary purpose of the study is to address hydrogeological/hydrological information requirements established by the Municipality and the Province. As such, the objectives are as follows.

- To determine the existing elevations of the groundwater table within the site and to provide the final depth of excavation such that excavation terminates at least 1.5 metres above the water table.
- To identify existing surface water on and surrounding the site, storage and drainage features on the site, points of discharge to surface water, and possible interconnections between surface water and groundwater.
- To assess potential effects of pit excavation activities on local water resources and groundwater use.
- To provide the necessary information to determine any impacts on the natural environment from a hydrogeological/hydrological perspective.

1.3 METHODOLOGY

To obtain site-specific hydrogeologic information regarding the groundwater and surface water systems, possible groundwater and surface water interaction, and input to the pit development, the following activities were undertaken.

- The available topographic and geological mapping for the site area was reviewed and analyzed to interpret the hydrogeological conditions at the site.
- ➤ A historic geological report for the site area was reviewed for preliminary subsurface conditions.
- The MOE water well records for the site and surrounding area were collected and analyzed to determine groundwater depths, geologic profiles, historic water levels, and well yields.
- Two reconnaissance on-site visits were completed to identify the locations for the new boreholes and monitoring wells, and to investigate for seeps, springs, and other components of groundwater and surface water systems.
- Five (5) additional monitoring wells designated as BH05-2, BH05-18, BH05-19, BH05-20, and BH06-1 were installed in five boreholes drilled on the site between May 2005 and March 2006 to permit the establishment of the depth and elevation of the groundwater table, and the direction of groundwater movement. Borehole BH06-2 was drilled and decommissioned after analyses of the geological conditions in the southeast corner of the eastern parcel of the site.
- A survey was undertaken to establish monitoring well elevations to an on-site benchmark of 189.00 metres above sea level (m asl) for the ground surface at BH05-18. In April 2007, the monitoring well elevations were updated using the geodetic information provided by the 43 Degrees North.
- Groundwater levels were measured at monitors BH05-2, BH05-18, BH05-19, and BH05-20 in October 2005, January, March, April, and December 2006, April 2007, and May 2008 during seven monitoring events. In monitor BH06-1 groundwater

levels were measured in March, April, and December 2006, April 2007, and May 2008 during five monitoring events.

A subcatchment analysis and a water balance assessment were completed for the low lying area on the site.

2.0 <u>HYDROGEOLOGIC SETTING</u>

2.1 TOPOGRAPHY AND PHYSIOGRAPHY

The site is located on a hill, which is approximately 2.5 km wide in an east-west direction and slightly longer in the north-south direction. The hill has a flattened top and is approximately 50 m higher than the surrounding sand plain. Regional mapping by Chapman and Putnam (1972), surficial geological mapping (Leyland and Mihychuk, 1984), and the Aggregate Resources Inventory (Rowell, 1997) indicate the presence of lacustrine sand and gravel in the investigated area.

For the convenience of the site description, it is considered that the site consists of two parcels: the Western parcel and the Eastern parcel divided by the road allowance between Lots 32 and 33, as shown in Figure 1.

The maximum elevation on the site is about 204 m asl in the western part of the Western parcel and the minimum elevation is about 180 m asl in the southeastern portion of the Eastern parcel. A low-lying area at an elevation of about 181 m asl is located in the north-central portion of the Western parcel and is identified to be seasonal wetland/pond on the topographic mapping. The northern limit of the site along the Ontario Hydro Easement varies between 180 to 195 m asl, and the southern limit varies between 180 and 195 m asl.

The Codrington area was influenced by a number of glacial and post-glacial events, and the topography is irregular and varied. During the Pleistocene (glacial) Epoch, the area was covered by a succession of ice sheets, which exceeded one kilometre in thickness. During the retreat and melting of the ice sheets, the ice split into several ice lobes, which behaved semi-independently. A northern ice lobe stood in the Rice Lake – Sterling area, and the Lake Ontario lobe was centred in the Lake Ontario basin. The Oak Ridges Moraine was formed between these two lobes, and the moraine is a major glacial and physiographic feature to the west of the Brighton area toward Toronto. Brighton is near the eastern extremity of the Oak Ridges Moraine, although the feature is poorly developed in this area and was eroded into several disconnected fragments.

The Oak Ridges Moraine and the drumlinized till plains to the north and to the south of the moraine were subjected to a variety of pro-glacial and post-glacial influences. During the waning of the ice, a number of glacio-fluvial ice-contact features, such as eskers and kames were deposited. Meltwater that flowed generally southward from the ice front often eroded previously existing landforms and/or deposited surficial outwash sand with occasional gravel. The site itself is not in the Oak Ridges Moraine physiographic region or the Oak Ridges Moraine Conservation Plan Area (ORMCPA).

A series of high level pro-glacial lakes existed in the area after the deposition of the major glacial landforms. The lakes formed adjacent to the ice lobes and numerous shorelines and sand plains were deposited at that time in the Brighton area. The lake deposits commonly were developed on, and overlie, previously existing deposits.

Lands within the study area are primarily undeveloped and consist of bush, sand/gravel highlands, and some farmlands.

2.2 GEOLOGY

2.2.1 Regional Geology

The available geological information for the Codrington area indicates that the surficial materials are lacustrine origin. These materials are several metres in thickness and they overlie some type of older deposits. Leyland and Mihychuk (1984) noted the presence of silt to sand till over much of the southern portion of the deposit, and this suggests that the Codrington hill is one of several flat-topped till mounds in the area.

The actual soil stratification was interpreted from the data obtained from MOE water well records and Jagger Hims Limited boreholes, which are shown on Figure 2. The regional cross sections A-A' and B-B', presented on Figures 3 and 4, reflect the regional geology. The site is located on a high area of land with near surface deposits of silt, sand, and gravel. Deeper units of fine-grained soil (clay, silt, and hardpan) are present and also occur near surface within the surrounding lower lying area. Surficial sand deposits also occur in the lower lying area. Bedrock was detected north of the site at a depth of about 12 m below ground surface, which corresponds to an elevation of about 115 m asl.

2.2.2 Local Geology

Thirty-seven test pits and seventeen boreholes were completed on the site in early 2005. Three additional boreholes were completed in late 2005 and two more in early 2006 (for total of 22 boreholes) to investigate local geological conditions. The interpretation of local geology suggests that the Codrington hill is an ice-contact or kame feature whose surface was modified by the later lacustrine events in the area. The 2005 and 2006 drilling results support the interpretation that Codrington hill is an ice-contact glaciofluvial deposit of significant thickness. The locations of the boreholes advanced during both drilling programs are shown on the Site Plan, Figure 5. The results of the drilling are detailed in the appended borehole logs of Appendix A and are summarized on Figures 6, 7, and 8.

The main finding of the drilling is that there are substantial amounts of sand and gravelly sand in the subsurface beneath the Codrington Property and that a large amount of this material is above the water table. A detailed analysis of the borehole results allows for the grouping of the material encountered into three major units.

Unit 1

Unit 1 includes silt till and silty fine sand that are generally in the order of about 5 m to 8 m thick, but were detected to be at least 11.9 m deep at BH05-15 and 16.8 m deep at BH05-16. This unit is prominent near surface in boreholes BH05-6, BH05-8, BH05-9, BH05-10, BH05-12, BH05-13, BH05-15, BH05-16, BH05-19, and BH05-20. A surficial 1.5 m thick portion of Unit 1 is located at BH05-4.

Unit 2

Unit 2 is the main sand and gravel unit present on the site. The unit is prominent at surface or below Unit 1 in the southern and eastern portions of the site. The material of Unit 2 is variable in texture and commonly ranges from fine to medium sand with some (20%) gravel to sand and gravel in approximately equal proportions. The gravel-rich areas appear as lenses or beds within the sand, and the gravel content is variable. The unit reaches a confirmed maximum thickness of 25 m in the south-central and eastern portion of the site near boreholes BH05-4, BH05-5, BH05-6, BH05-7, BH06-1, and BH06-2. There are several small inclusions of till and silt within Unit 2, which support the idea that much of this unit is ice-contact in origin. However, the upper few metres of material were likely wave-washed during the existence of Lake Iroquois in the area.

Unit 3

Unit 3 is generally fine to medium sand with an occasional lens (e.g. BH05-13) of coarser material. The unit is present at depth beneath much of the site and is generally regarded as marginal for use as aggregate due to its fine-grained texture and lack of gravel. Unit 3 is transitional with Unit 2 and essentially represents the gravel-poor phase of the combined unit.

Many of the boreholes encountered difficult drilling at the 25 m to 35 m depth. Boulders and/or a possible cemented layer were identified in several boreholes at the depth of approximately 30 m, and saturated sand was also encountered at a similar depth.

Two boreholes were advanced near the low-lying area in the north-central portion of the Western parcel of the site. BH05-19 was advanced to a depth of 29.6 m and intersected a shallow silt unit (Unit 1) from 0.6 to 8.2 m below ground surface. Owing to the potential for the silt unit to contain a perched water table, a second borehole BH05-20 was advanced within the southern portion of the low-lying area to a depth of 5.1 m and was completed as a standpipe monitoring well.

2.3 GROUNDWATER SETTING

2.3.1 Regional Groundwater Setting

Most of the water wells are located around the high area of land at a distance of more than 1 km from the site. The Ministry of the Environment (MOE) water well record locations are shown in Figure 2 and listed in Tables A-1 and A-2, Appendix A. A well record for the recently drilled water well located west of the site boundary is also presented in Appendix A. Two regional hydrogeological cross-sections A-A' and B-B' are presented in Figure 3 and Figure 4.

Based on the MOE water well records, most water wells are drilled wells that are developed within deep sand and/or gravel deposits greater than 15 m below ground surface. Some shallower water wells and dug wells are present. Around the high area of land, most water wells are developed within an aquifer that is confined by overlying fine-grained material such as clay or hardpan. It is anticipated that the clay identified in the well records is dominantly silt with different proportions of clay, and may be a fine-grained till.

The two well records for water supply wells in the high area of land (272 and A027288) indicate deep wells to about 40 m below ground surface. A027288 indicates confining layers of fine-grained material, with a perched water table at about 32 m below ground surface.

Groundwater levels in the water wells indicate higher groundwater elevations within the high land, with lower groundwater levels in water wells in the surrounding lower lying areas. Therefore, as expected, regional groundwater is inferred to move in a radial pattern from the high land toward the surrounding lower lying areas. Thus, the high land represents a regional groundwater recharge area.

Based on available data, local groundwater uses are for domestic purposes and some limited uses for livestock watering.

2.3.2 Site Hydrogeology

Groundwater levels were measured in the on-site monitoring wells BH05-2, BH05-18, BH05-19, and BH05-20 in October 2005, in January, March, April, and December 2006, in April 2007, and in May 2008. In monitor BH06-1, groundwater levels were measured in March, April, December 2006, in April 2007, and in May 2008. Monitors locations are shown on Figure 5. Monitor construction details are presented in Table B-1 and groundwater elevations are presented in Table B-2, Appendix B.

Groundwater levels within the deep monitoring wells in average fluctuated less than 0.75 m from October 4, 2005 to May 9, 2008. Considering that infiltration to the water table will naturally vary between the fall, winter, and spring, it is interpreted that the permeable soil permits the rapid dissipation of infiltration. Thus, the late spring water table conditions observed in May 2008 may be considered to represent the maximum water table elevation for the site at most locations. At BH05-18, the maximum water table elevation occurred in April 2007.

Figure 9 presents the maximum water table configuration observed for May 2008. As presented, the groundwater table is inferred to be highest in elevation with the central portion of the site below the area of high surface topography and where sand occurs near surface. Within the northwestern portion of the site, the fine-grained surficial material (silt and silty fine sand) prevents the rapid infiltration of water to the water table and thus prevents the establishment of high water table levels. The direction of groundwater movement is outward from the groundwater high toward the north, south, east, and west. As expected, no groundwater seeps or springs were identified on the site.

A seasonal perched groundwater table was detected near the wetland/pond area within the north-central portion of the Western parcel of the site at BH05-20. In October 2005, a water table was not detected, but from January 2006 through May 2008 the perched water table was within 0.5 m of ground surface. It is interpreted that the perched water table is formed as a result of the slow downward movement of groundwater through the underlying clayey silt. As shown in Figure 6, the clayey silt (Unit 1) is underdrained by the deeper unconfined water table.

Based on the water table configuration and the surrounding low areas, it is inferred that vertical hydraulic gradients are downward and the site is located in a groundwater recharge area.

2.4 SURFACE WATER

On a regional basis, there are few surface watercourses located within two kilometres of the site. One watercourse is Cold Creek, which is about 1 km south of the site and flows in an easterly direction. A tributary of Marsh Creek is located about 1 km west of the site and flows in a northerly direction toward Murray Marsh, which is located about 2 km northeast of the site. Tributaries of Marsh Creek and Murray Marsh are located within about 500 m east of the site. A permanent watercourse was identified about 50 m south from the southeast corner of the site, which slopes in an easterly direction. Based on the water table

elevation in this area as presented in Figure 9, there is a groundwater baseflow component to this watercourse. The groundwater also contributes to baseflow in watercourses located further removed from the site, such as Cold Creek and Marsh Creek.

There was no evidence of surface water on the site during September to November 2005, and from March 2006 to May 2008, except within the wetland area within the north-central portion of the Western parcel. The low-lying area contained some seasonal water accumulation of about 0.2 m depth in March 2006 and about 0.5 m in December 2006, April 2007, and May 2008 as a result of snowmelt and overland surface water runoff from the surrounding areas of higher topography as well as poor downward drainage due to the underlying lower permeability silt. From January 2006 through May 2008 the monitoring well at BH05-20 detected a perched water table within about half a metre below the ground surface. The highest level of perched water was detected at BH05-20 in May 2008, when the water table was within about 0.1 m from the ground surface.

2.5 CLIMATIC WATER BUDGET

The water balance for the study area was estimated using available climatic data from the on-line resources provided by Environmental Canada and the Ministry of the Environment (MOE) infiltration guidelines. The climatic water budget data from the local climatic station at Belleville are summarized in Tables C-1 and C-2, Appendix C. Based on the normal data for 1971 to 2000, the annual precipitation averages about 891.8 mm (mm/a). Considering available evapotranspiration of about 533.2 mm/a, the precipitation available for runoff or infiltration is about 358.6 mm/a.

As expected, a calculated water surplus occurs during the winter, spring, and fall months, with a water deficit during the summer months. It should be noted that the majority of water surplus in the winter accumulates as snow. Snowmelt during the spring results in the runoff or infiltration of precipitation that is effectively equivalent to the winter and spring water surplus.

2.6 SUBCATCHMENT ANALYSIS

To assess the contribution of precipitation to groundwater and surface water, and to obtain the data required for an environmental impact assessment of the proposed pit development, a subcatchment analysis was performed for the site.

The site was partitioned into three catchment areas for: 1) the on-site wetland, 2) Cold Creek, and 3) Marsh Creek. Each catchment area was then subdivided into subcatchment areas based on the proposed pit excavation boundaries and buffers as shown in Figure 10. The infiltration and runoff rates were calculated for each of these subcatchments. A summary of the water balance for subcatchments under pre-development and post-development conditions is provided in Table 1.

The proposed site development will shift portions of the surface water flow divides for local subcatchments. The following subcatchments will change drainage areas to which they contribute; unlisted areas will not change.

SUBCATCHMENT AREA	PRE-DEVELOPMENT DRAINAGE	POST-DEVELOPMENT DRAINAGE DIRECTION
1A	Wetland/Pond	Groundwater
1B	Wetland/Pond	Groundwater*
1C	Wetland/Pond	Groundwater*
1D	Wetland/Pond	Groundwater*
1E	Wetland/Pond	Groundwater
1G	Wetland/Pond	Groundwater*
2A	Cold Creek	Groundwater
3A	Marsh Creek	Groundwater
3E	Marsh Creek	Groundwater
3G	Marsh Creek	Groundwater

NOTE: * indicates that the runoff component will be toward the excavation and will infiltrate as groundwater within the excavation.

Infiltration and runoff for each subcatchment was calculated using the method of Table 2 in the Hydrogeologic Information Requirements (MOE, 1995), with some adjustments for site conditions. Runoff was calculated as the difference between moisture surplus and infiltration.

The following are detailed comments on the infiltration calculations that were completed for the site.

- Input values for Table 1 subfactors are based on available information for soil and groundwater conditions. For subcatchments without direct subsurface information, conditions were inferred from the nearest borehole/monitoring well.
- The subcatchment areas were calculated based on the indicated boundaries shown in Figure 10. Water balance calculations were completed for above groundwater table extraction on the area of development.
- The moisture surplus used in the calculations was derived from the long-term climatic average conditions, based on records between 1971 and 2000. Monthly evapotranspiration values were calculated using the Thornthwaite and Mather method (1957) that included a daylight correction for latitude.
- For the wetland/pond an infiltration factor of 1 was considered for direct precipitation and runoff as water will accumulate and eventually infiltrate into the subsurface and contribute to groundwater. Open water evaporation was assumed to be similar to the calculated evapotranspiration.
- The area covered with wetland was assumed to provide a similar infiltration factor for pre-development and post-development conditions.

A summary of the site water balance for pre-development and post-development conditions is provided in Table 1. The primary data for the site water balance calculations is shown in Table C-3, Appendix C.

For the majority of the site the infiltration rate varied between 70% and 80% of the water surplus for an infiltration coefficient of 0.7 to 0.8. Therefore, a runoff coefficient of between 0.2 and 0.3 was estimated for the site for pre-development conditions. Thus, an annual runoff between 72 and 108 mm/a and an annual infiltration between 251 and 287 mm/a are reasonable. One exception is for the wetland area within the north-central portion of the Western parcel of the site, where an infiltration rate of 100% was estimated. Due to the site topography in this area, the water surplus that accumulates in the wetland area eventually infiltrates into the underlaying soil which results in localized seasonal perched groundwater conditions.

3.0 IMPACT ASSESSMENT

3.1 **PROPOSED OPERATIONS**

CBM Aggregates proposes to operate the pit as an above the water table operation. In accordance with the ARA Provincial Standards, this operation requires that the base of the pit must be greater than 1.5 m above the water table. As noted in Section 2.3, water table levels in average fluctuated by less than 0.75 m from October 2005 through May 2008, and the late spring water table conditions observed in May 2008 may be considered to represent the maximum water table elevation for the site at most locations. At BH05-18 the maximum water table elevation occurred in April 2007.

Groundwater monitors BH05-18 and BH05-19 indicate that the depth to the water table within the southwestern portion of the site is between about 23.9 to 25.2 m below ground surface. Within the southeastern portion of the site in the vicinity of BH05-2 the water

table is about 10.0 m below ground surface, while within the eastern portion of the site in the vicinity of BH06-1 the water table is about 7.0 m below ground surface.

The following table provides an assessment of the extractable material at the site with respect to the above water table criterion. It is noted that the extractable material includes material from Units 1, 2, and 3 as defined in Section 2.2. Depending on the elevation of surface topography and the water table, there are localized areas of greater or lesser extractable material.

COMPARISON OF WATER TABLE AND EXTRACTABLE MATERIAL

MONITOR DESIGNATION	DEPTH TO WATER TABLE (m bgl)	SOIL THICKNESS ABOVE WATER TABLE (m bgl)	THICKNESS OF EXTRACTABLE MATERIAL (m)
BH05-2	10.0	10.0	8.5
BH05-18	23.9	23.9	22.4
BH05-19	25.2	25.2	23.7
BH06-1	7.0	7.0	5.5

NOTES:

1) 'm bgl' indicates metres below ground level.

2) 'm' indicates metres.

3) Water table depth based on maximum elevations (April 2007 or May 2008).

4) ARA/Standards Criterion is a base excavation 1.5 m above water table.

In summary, the greatest thickness of extractable material occurs in the area of higher surface topography west of the road allowance between Lots 32 and 33 (Western parcel). However, it is noted that northwest of BH05-9 the surficial unit of silt to silty fine sand (Unit 1) ranges in thickness from about 4.6 m to 8.2 m, with greater than 11.9 to 16.8 m of Unit 1 at BH05-15 and BH05-16, respectively. See Figure 5 for location details.

Based on the May 2008 water table configuration presented in Figure 9, the pit average base elevation will be about 177.1 m asl (175.6 m asl + 1.5 m) within the central portion of the site and may vary along the site perimeter as detailed in the following table. It is noted that the pit base elevation presented for BH05-18 is based on the April 2007 data, which recorded the maximum water table elevation of all the monitoring events.

MONITOR	GROUND SURFACE ELEVATION	PIT BASE ELEVATION	
DESIGNATION	(m asl)	(m asl)	
BH05-2	184.8	176.3	
BH05-18	191.0	168.6	
BH05-19	185.0	161.3	
BH06-1	182.6	177.1	

Based on the data obtained during the subsurface investigations and groundwater monitoring program, the quantity of the aggregate resources available for extraction was calculated. The calculations were completed for the two scenarios: Scenario I with a vertical slope of extraction, and Scenario II with extraction with a slope ratio of 3:1 (horizontal : vertical). In both scenarios the volumes of resources available for extraction were calculated with consideration of the three phases of the pit development. The calculations results are summarized below.

SCENADIO #	MATERIAL VOLUME (m ³)			
SCENARIO #	PHASE I	PHASE II	PHASE III	TOTAL
Scenario I: Vertical Slopes	6,398,433	3,898,449	10,235,889	20,532,771
Topsoil and silt (Unit 1)	1,147,203	920,484	4,125,169	6,192,856
Sand and gravel (Units 2 and 3)	5,251,230	2,977,965	6,110,720	14,339,915
Scenario II: Slopes at 3:1	4,816,017	2,269,863	8,160,669	15,246,549
Topsoil and silt (Unit 1)	652,698	557,442	3,048,921	4,259,061
Sand and gravel (Units 2 and 3)	4,163,319	1,712,421	5,111,748	10,987,488

In the event that material washing operations are considered as part of the site operations, Section 3.3 provides a summary of surface water available for on-site storage. If groundwater is required to supplement the surface water storage, a Permit To Take Water may be required.

A minor groundwater supply will be required for dust control and for periodic watering of trees to be planted as part of the site rehabilitation program. As the predicted maximum water requirement will not exceed 50,000 L/day, a Permit To Take Water will not be required. Water will either be obtained from an off-site source or from an on-site water

supply well located within the northern portion of the Western parcel of the site, which is not proposed for extraction.

3.2 GROUNDWATER ASSESSMENT

According to common industry findings for above water table pit development and based on Jagger Hims Limited's 20 years of experience in extensive groundwater monitoring at similar pits, above water table extraction is not known to negatively affect groundwater resources. However, to meet and exceed the Provincial requirements as established by the ARA Provincial Standards, a detailed groundwater assessment was completed to evaluate the possible effects of the above water table extraction on groundwater resources.

Based on the available area for pit development south of the Ontario Hydro Easement and estimated setbacks, a pit area of about 81 ha is estimated. The total infiltration volume for the property in pre-development conditions is about 284,805 m³/a, with about 94,126 m³/a of runoff. Development of the pit will prevent runoff within the pit area and some adjacent subcatchment areas, and re-direct the runoff to infiltration through the permeable sandy soil. Therefore, the infiltration volume in post-development conditions will be about 356,954 m³/a. As such, the post-development conditions will be characterized with an increase in infiltration to the groundwater table of about 72,162 m³/a.

The predicted increase in infiltration of water surplus to the groundwater table will maintain the groundwater recharge characteristics of the site. It is predicted that the predevelopment water table high within the central portion of the site will be maintained and may increase by about 0.1 m to 0.2 m upon completion of the excavation as a result of the increase in infiltration. As such, shallow groundwater will continue to move from the site in a radial direction toward the low-lying areas that surround the site. Downward hydraulic gradients through the underlying low permeable units will maintain the quantity of water currently available to local water wells around the site. Based on groundwater information collected from October 2005 to May 2008, there is no notable shallow groundwater contribution to the wetland area within the north-central portion of the Western parcel. Water accumulates within the low-lying area during the spring and fall months as a result of surface water runoff, and slowly infiltrates through the underlying silt.

Water quality impacts are not anticipated and operation of the pit in accordance with prescribed conditions and Technical Standards and Safety Authority (TSSA) requirements will protect water quality. The sandy soil and attenuation capacity around the site will also prevent detectable changes in suspended solids or temperature within the shallow groundwater beyond the 120 m zone around the property as shown in Figure 10.

The watercourse southeast of the property is about 90 m from the edge of the excavation. Considering the lateral hydraulic gradient (0.017 m/m), a range of reasonable bulk hydraulic conductivities for the soil $(10^{-4} \text{ to } 10^{-3} \text{ m/s})$, and a soil porosity of 30%, groundwater movement from the excavation to the watercourse would take about 18 to 180 days, which should provide sufficient time for the infiltration to equilibrate to normal groundwater temperatures. In addition, the low permeable units that protect the deeper sand and gravel aquifers will not be compromised by the pit development.

In summary, it is predicted that the development of a pit on the site will not result in adverse effects to the local groundwater quantity or quality. Groundwater monitoring is recommended in Section 4.0 of this report to confirm acceptable groundwater conditions, and this monitoring program will be included on the ARA Site Plan for the proposed pit.

3.2.1 Effects on Local Water Wells

The results contained in Section 3.2 indicate that the regional groundwater table will not be adversely affected by pit excavation. This assessment is consistent with the research

findings published by the Ministry of Natural Resources in the document entitled Applied Research On Source Water Protection in the Aggregate Industry.

The pit excavation has no predicted negative effects on groundwater quantity or quality. In fact, it will increase the overall recharge to the aquifer. As such, there will be no negative effects of the proposed excavation on the local groundwater users. Correspondingly, the closest water well, which is located downgradient from the western site boundary at a distance of about 20 m, will not be negatively affected by the proposed pit development.

3.3 SURFACE WATER ASSESSMENT

Considering the method of extraction above the groundwater table, the plan to keep a "no extraction zone" in the northwest corner of the site, the distance to the nearest surface watercourses, and a predicted increase in groundwater recharge, no negative effects to local watercourses are expected from the pit operations.

A reduction in runoff on the site and toward the site boundaries is predicted. The runoff to the on-site wetland located within the north-central portion of the Western parcel is predicted to be about 77% less than pre-development conditions. As a result, the depth and duration of the ponded water in the wetland will be reduced. However, as the wetland represents a groundwater recharge feature and the reduced runoff corresponds to an increase in infiltration, no negative effects to groundwater quantity or quality are predicted in this area. Impacts on the wetland are further reviewed in the Natural Environment report prepared by AECON (formerly Gartner Lee Limited) (2008).

Runoff from the site toward Cold Creek will decrease by about 80% with the proposed extraction area. This runoff reduction is minor compared to the overall watershed area for Cold Creek and considering the surficial sand and gravel south of the site where most runoff will infiltrate into the groundwater. In addition, the corresponding increase in

infiltration will enhance the southerly groundwater movement and the baseflow contribution to the creek.

Within the northern and eastern portions of the site, the component of runoff toward Marsh Creek will decrease by about 70%, while the overall infiltration to groundwater will increase. As noted above, the resultant groundwater baseflow to the local watercourses compensate for the reduced runoff.

The volume of surface water available for storage and use for material washing as part of site operations will depend on the surface area and design of on-site storage/settlement ponds. The permeability of the sandy soil requires that the ponds be designed with a low permeable base of on-site silty soil. In addition, the settlement of fines will enhance the retention capability of the ponds. Assuming that evaporation from the ponds will be similar to the estimated evapotranspiration rates, a lined pond should provide water at a rate of about $0.36 \text{ m}^3/\text{a/m}^2$ of pond area. Most water accumulation in the ponds will occur during the spring months.

No off-site discharge of water from the storage/settlement ponds will be required. Excess water may be directed to the wetland/pond for infiltration to the groundwater table.

4.0 <u>PERFORMANCE MONITORING PROGRAM</u>

Development of the pit as an above the water table operation will not have a negative effect on local groundwater or surface water resources. However, it is recommended that the following performance monitoring program be implemented to confirm acceptable conditions and to provide input to contingency measures, if required.

Considering the proposed extraction area, monitoring wells BH05-19 and BH05-20 should be decommissioned in accordance with the regulatory requirements.

The performance monitoring program should include the following.

- Groundwater Level Monitoring Complete at BH05-2, BH05-18, and BH06-1 on a quarterly basis over the calendar year.
- Baseline Groundwater Quality Monitoring Complete one monitoring event at BH05-2, BH05-18, and BH06-1 prior to extraction for the following parameters: pH, conductivity, turbidity, temperature, and total dissolved solids.
- Annual Reporting Prepare an annual monitoring report by March 31 of each year to summarize the monitoring results of the preceding year. The report should document complaints and responses.
- Groundwater quality sampling should be completed once, prior to commencement of pit operations. The groundwater level monitoring should be completed annually on a quarterly basis.

It is predicted that an above the water table pit operation will have no negative affects on groundwater and surface water resources.

4.1 CONTINGENCY MEASURES

If groundwater levels at BH05-2, BH05-18, and BH06-1 decrease by 2 m relative to baseline conditions, a detailed review of data collected for the site to determine the cause should be completed.

If the water level decrease is a result of site operations, increase the scope of the performance monitoring program to include residential wells within 100 m of the site and the watercourse southeast of the site. Monitoring should include annual quality tests for the baseline parameters and quarterly levels.

If pit operations are determined to negatively affect groundwater or surface water resources, the following contingency measures should be implemented.

- 1. Interference with acceptable quality or quantity of water in a water well should result in provision of an acceptable water supply by either installation of a new water well or a suitable alternative.
- 2. Negative effects on the watercourse should be remediated by changes in site operations or through site rehabilitation.

5.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The results of this Hydrogeologic Study indicate that no negative effects to the groundwater and surface water regimes are predicted as summarized below.

- A sand and gravel unit (Unit 2) occurs across the southern portion of the site and achieves a confirmed maximum thickness of about 25 m within the south-central portion of the site. The underlying sand unit (Unit 3) contains less gravel. Within the northwest portion of the site a silt to silty sand unit (Unit 1) occurs at surface and is generally 5 m to 8 m in thickness, but was detected to a depth of about 17 m at one borehole location.
- The wetland within the north-central portion of the Western parcel of the site is located in an area with a surficial silt layer (Unit 1) that is about 8 m in thickness, but thickens toward the northwest.
- The site is located within a high area of land that forms a regional recharge area for dominantly confined aquifers in the surrounding lower lying areas. Most water wells are developed in confined aquifers at a depth greater than 15 m below ground

surface. The quantity of water available for domestic water supply wells will not be negatively affected by the pit development as the recharge to the aquifer developed by the local water wells is predicted to increase. In addition, there will be no negative impact from pit development on groundwater quality owing to the nature of the development, the on-site environmental management processes, and the available attenuation capacity within the water table aquifer around the site. Most water wells around the site are developed within an aquifer that is confined by overlying fine-grained deposits such as clay or hardpan.

- Development of the site as an above the water table operation under a Category 3 Application will provide from 20 m to 30 m of available material west of the road allowance between Lots 32 and 33 (Western parcel) and about 5 m to 25 m of material east of the road allowance (Eastern parcel). Within the northwestern portion of the Western parcel the thickness of sand and gravel resources will range from approximately 14 m to approximately 17 m due to the occurrence of surficial silty deposits (Unit 1). Most of these surficial silty deposits are located within the area not proposed for extraction.
- It is calculated that between about 11 and 14 million cubic metres of suitable material (Units 2 and 3) are available for extraction for the proposed pit design.
- The base of excavation will be 1.5 m above the May 2008 groundwater table, which had an elevation of ±175 m above sea level (asl) within the central portion of Lots 33 and 32, falling off to below ±150 m asl in the northwest, ±155 m asl in the northeast, ±165 m asl in the southeast, and ± 160 m asl in the southwest.
- Pit development will increase the groundwater recharge in the area. No negative effects to groundwater quality or quantity are predicted. Similarly, water wells in the area will not be negatively affected by the pit development.

- There is no notable groundwater contribution to the wetland within the Western parcel of site. Water accumulates within the wetland during the spring and fall months as a result of surface water runoff, and slowly infiltrates through the underlaying silt. As a result, temporary perched groundwater conditions occur in this area. Pit development will reduce the amount of runoff to the wetland, which will reduce the depth and duration of ponded water. However, the net infiltration to groundwater in this area will be maintained.
- A reduction in surface water runoff on the site will occur, but no effects to off-site surface watercourses are predicted as a result of increased infiltration. The contribution of groundwater baseflow to the watercourses will continue.

The following recommendation is provided for consideration.

The performance monitoring program should be implemented as outlined in Section 4.0.

Yours truly, JAGGER HIMS LIMITED

Vyacheslav G. Magmedov, Ph.D., P.Geo. Project Manager

Jason T. Balsdon, M.A.Sc., P.Eng. Consulting Engineer

6.0 <u>REFERENCES</u>

Chapman, L.J. and Putnam, D.F. (1984). The Physiography of Southern Ontario. OGS Spec. Vol. 2, 3rd edition, 270 pp. plus OGS map P2715 (1:600,000 scale)

Environment Canada (2007). Canadian Climate Normal (on-line source of climatic data)

Leyland, J.G. (1984). Quaternary Geology of the Campbellford, Trenton, Consecon, Tweed, Belleville, Wellington, Sydenham, Bath, and Yorkshire Island map-areas, Ontario. MSc Thesis, Brock University, 68pp. plus 8 maps [1:50,000 scale Quaternary geology maps: 1) Campbellford (OGS map P2532), 2) Trenton-Consecon area (map P2586), 3) Tweed area (map P2615), 4) Belleville (map P2540), 5) Wellington (map P2541), 6) Sydenham (map P2587), 7) Bath and Yorkshire Island (map P2588) and 8) regional map shows southward extent of Dummer till, Oak Ridges moraine and related sediments, and ice flow directions].

Map. NTS 1:50,000, Sheet 31C/04, Trenton, NAD 27, Zone 18

Mihychuk, M. (1984). The Surficial Geology, Sedimentology and Geochemistry of the Late Glacial Sediments and Paleozoic Bedrock in the Campbellford area, Ontario, with Special Reference to the Dummer Complex. M.Sc. Thesis, Department of Earth Sciences, Brock University, Ontario, 101 pp. plus map [a fine 1:50,000 scale map of the area including Campbellford, Hastings, Norwood and Havelock].

The Ministry of Environment and Energy. Water Well Records

The Ministry of Municipal Affairs and Housing (2002). The Oak Ridges Moraine Conservation Plan (ORMCP), Final - April 22, 2002.

- The Ministry of Municipal Affairs and Housing (2005).Greenbelt Plan, February28, 2005
- Ministry of Natural Resources (2006). Applied Research on Source Water Protection in the Aggregate Industry. Blackport Hydrogeology Inc., Golder Associates Final Report, November 2006.
- Rowell, DJ (1994). Aggregate Resources Inventory of Brighton, Cramahe, Murray, Percy, and Seymour Townships, County of Northumberland. OGS Misc. Pap. Pp.163, 178-180.
- Thornthwaite, G.W. and Mather, J.R. (1957). Instructions and Tables for Computing Potential Evapotranspiration and Water Balance, Publications in Climatology, Volume X, Number 3.

Town of Brighton (2000). Municipality of Brighton Official Plan.

PROJECT: 0517	DATE: MARCH :	HYDROGEO CODRINGTC For St. Marys	SITE P	MAP SOURCE: MAP FROM MNR 1	100 - 0		A'	• 272	 A027288 	<table-cell-rows> ВН05-2</table-cell-rows>	• BH05-1		Legend
777.00 REF. NO.: 0-05177700F2-SP	2009 SCALE: 1:10,000	LOGICAL STUDY NN PROPERTY Cement Inc. (Canada)	LAN	10 18 275048900, NAD 83.	200 m		CROSS SECTION	MOE WATER WELL LOCATION AND DESIGNATION	NEW WATER WELL LOCATION AND DESIGANTION	MONITORING WELL LOCATION AND DESIGNATION	BOREHOLE LOCATION AND DESIGNATION	PROPERTY BOUNDARY (APPROXIMATE)	

BETWEEN BORINGS.

D' EAST

Legend

100 metres 50 0

CROSS SECTION D-D'

HYDROGEOLOGICAL STUDY CODRINGTON PROPERTY For St. Marys Cement Inc. (Canada)

DATE: MARCH 2009	SCALES: AS SH	
	FILE NO 0-031	Figure
Environmental Consulting Engineers		7

E' SOUTH

Legend

HORIZONTAL SCALE 1:5000 VERTICAL SCALE 1:500

50 100 metres 0

CROSS SECTION E-E'

HYDROGEOLOGICAL STUDY CODRINGTON PROPERTY For St. Marys Cement Inc. (Canada)

Environmental Consulting Engineers

EXAMPLE 1 JACCER HIMS LIMITED Environmental Consulting Engineers		Figure 8
PROJECT: 051777.00	FILE NO.: 0-051	77700F8-XSE
DATE: MARCH 2009	SCALES: AS SH	OWN

Legend				
<u></u>	PROPERTY	BOUNDARY		
BH05-2 174.31	MONITORIN DESIGNATI AS OF MA	IG WELL LOC ON AND GRO NY 2008	ATION, UNDWATER LEVEL	
• A027288 152.5*	NEW WATE DESIGNATI GROUNDW	R WELL LOCA ON AND APPI ATER LEVEL A	ATION AND ROXIMATE AT INSTALLATION	
• 272	MOE WATE DESIGNATI	R WELL LOC	ATION AND	
170	GROUNDW (5 m INTI	ATER CONTOL ERVALS)	IRS	
∕150	EXTRAPOL CONTOURS	ATED GROUNI	DWATER	
$ \longrightarrow$	INFERRED DIRECTION	GROUNDWATE	ER FLOW	
100 0 L MAP SOURCE: MAP FROM MNR AIR PHOTOGRAPH	200 J 10 18 2750 Y 1996, PUE	M 48900, NAD 3LISHED 2002	83. 2.	
WATER TABLE CONFIGURATION - MAY 2008				
HYDROGEOLOGICAL STUDY CODRINGTON PROPERTY For St. Marys Cement Inc. (Canada)				
DATE: MARCH 2	009	SCALE: 1:1	0,000	
PROJECT: 051	///.00	REF. NO.: C	-05177700F9-GW	
Environmental Consulting Engin	eers		9	

	Legend		
	PROPERTY BOUN	IDARY	
	BUFFER ZONE		
	🥓 💳 🥿 🛛 INTERNAL LIMIT	OF EXTRACTION	I
	BH06-1 🤣 JAGGER HIMS L	MITED MONITOR	RING WELL
		BOUNDARY ANI	DESIGNATION
	ARCHEOLOGICAL	SITE	
4			
2			
3			
m			
m			
V			
Å			
1 //			
N.			
11			
		metres	
11	MAP SOURCE CBM MAP Y321D CBM\A\E	XFEPLAN 1 OF	4, MARCH 2006
THE REAL			
	SUBCATCH	IENTS	
	DELINEATIO	IN	
12			T
$ \rightarrow $	CODRINGTON PRO	AL STUDI PERTY	L
-/	For St. Marys Cemen	t Inc. (Cana	da)
	5		,
E			
A.	DATE: MARCH 2009	SCALE:	1:5000
1A	PROJECT: 051777.00	FILE NO.:()-05177700F10-GW Figure
es.	JACCER HIMS LIMITED		10
/	Environmental Consulting Engineers		1

TABLE 1 SITE WATER BALANCE HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO

Pre-Development Condition	ons						Page 1 of 2
SUBCATCHMENT	FOOTPRINT	SURFACE	INFILTRATION	INFILTRATION	RUNOFF	RUNOFF	
AREA	AREA	TYPE	RATE	VOLUME	RATE	VOLUME	TOTAL
DESIGNATION	(m*)		(m/a)	(m³/a)	(m/a)	(m²/a)	
Woodland	125,384	Trees, bushes	0.287	35,985	0.072	9,028	
Open Area	191,234	Open soil/grass/farmland	0.251	48,000	0.108	20,653	
1B							
Woodland	0	Trees, bushes	0.287	0	0.072	0	
Open Area	10,375	Open soil/grass/farmland	0.251	2,604	0.108	1,121	
1C							
Woodland	6,612	Trees, bushes	0.287	1,898	0.072	476	
Upen Area	0	Open soll/grass/rarmland	0.251	U	0.108	U	
Woodland	6.995	Trees, bushes	0.287	2.008	0.072	504	
Open Area	1,697	Open soil/grass/farmland	0.251	426	0.108	183	
1E							
Woodland	1,972	Trees, bushes	0.287	566	0.072	142	
Open Area	6,883	Open soil/grass/farmland	0.251	1,728	0.108	743	
1F Weedland	00.800	Troop bushos	0.007	6 570	0.072	1 640	
Woouland Open Area	22,893	Open soil/grass/farmland	0.287	0,570 4 798	0.072	2,040	
1G	10,110	opensegradarannana	0.201	-1100	0.100	2,004	
Woodland	1,053	Trees, bushes	0.287	302	0.072	76	
Open Area	3,609	Open soil/grass/farmland	0.251	906	0.108	390	
Wetland/pond	7,297	Grass/bushes	0.359	2,620	0	0	
AREA TOTAL	405,119			108,410		37,028	
				H	UNOFF TO	TAL (m ² /a)	37,028
			TOTAL WATED			IAL (m/a)	108,410
Cold Crook Cotohmont Are			TOTAL WATER	ACCUMULATING	in ne P	ן(אי הוי טאינ	39,648
			· · ·				
Woodland	85.732	Trees, bushes	0.287	24.605	0.072	6.173	
Open Area	113,564	Open soil/grass/farmland	0.251	28,505	0.108	12,265	
28							
Woodland	8,089	Trees, bushes	0.287	2,322	0.072	582	
Open Area	37,690	Open soil/grass/tarmland	0.251	9,460	0.108	4,071	
AREA IVIAL	240,075			D		TAL (m ³ /2)	23.001
				INFILTE	RATION TO	TAL (m^3/a)	64,891
Marsh Creek Catchment A	rea						
ЗA							
Woodland	1,363	Trees, bushes	0.287	391	0.072	98	
Open Area	5,097	Open soil/grass/farmland	0.251	1,279	0.108	550	
38 Woodland	6 990	Trees buches	0.397	1 075	0.072	105	
Onen Area	9,866	Open soil/grass/farmland	0.251	2,476	0.108	1.066	
30	0,000						
Woodland	9710	Trees, bushes	0.287	2,787	0.072	699	
Open Area	32,121	Open soil/grass/farmland	0.251	8.062	0.108	3,469	
3D							
Woodland	6,781	Trees, bushes	0.287	1,946	0.072	488	
Open Area	7,786	Open soil/grass/farmland	0.251	1,954	0.108	841	
3E	00 100	Traco hystop	0.197	5777	0.072	1 4 4 0	
Woodianu Onen Area	5 5 4 1	Open soil/grass/farmland	0.267	1 391	0.072	598	
3F	0,011	0,000,000,000,000,000	01601	1100		I	
Woodland	4,545	Trees, bushes	0.287	1,304	0.072	327	
Open Area	3,141	Open soil/grass/farmland	0.251	788	0.108	339	
3G	400.000		0.007	50.040	0.070	10.000	
Woodland Open Area	183,339	Trees, busnes Open soil/grass/farmland	0.287	52,618	0.072	7 264	
3H	07,201	even oongrood annand	V16,V1	10,000	0.100	1,007	
Woodland	38,572	Trees, bushes	0.287	11,070	0.072	2,777	
Open Area	3,192	Open soil/grass/farmland	0.251	801	0.108	345	
AREA TOTAL	405,323						
				· R	UNOFF TO	TAL (m [*] /a)	34,007
				INFILTF	TATION TO	TAL (m*/a)	111,504
SITE FOUTPHINT TOTAL	1,055,517					I	04 106
SITE HUNOPP TOTAL (MY	a)						294,120 29/ 00C
SITE INFILIRATION TOTA	L (M /a)	woar -					204,6VD

NOTES:

1) Infiltration rate derived from Table 2 of MOE (1995).
 2) Woodland and grass/farmland areas based on 2007 site conditions.

.

3) "m³/a" means cubic metres per annum.

4) Totals may vary due to rounding.

TABLE 1 SITE WATER BALANCE HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO

Post-Development Condit	ions						Page 2 of 2
SUBCATCHMENT	FOOTPRINT	SURFACE	INFILTRATION	INFILTRATION	RUNOFF	RUNOFF	
AREA	AREA	ТҮРЕ	RATE	VOLUME	RATE	VOLUME	TOTAL
DESIGNATION	(m²)		(m/a)	(m ³ /a)	(m/a)	(m ³ /a)	
Wetland Catchment Area							
1B							
Woodland	0	Trees, bushes	0.287	Ö	0.072	0	
Open Area	10,376	Open soil/grass	0.251	2,604	0.108	1,121	
10					·····		
Woodland	6,612	Trees, bushes	0.287	1,898	0.072	476	
Open Area	0	Open soil/grass	0.251	0	0.108	0	
<u> 1D </u>					·····		
Woodland	6,995	Trees, bushes	0.287	2,008	0.072	504	:
Open Area	1,697	Open soil/grass	0.251	426	0.108	183	
1F		·			0.000	1 (0 (0)	
Woodland	22,893	I rees, bushes	0.287	6,570	0.072	1,648	
Open Area	19,115	Open soil/grass/farmland	0.251	4,798	0.108	2,064	
<u> </u>	1 051				<u> </u>		
Woodland	1,054	rees, pusnes	0.287	302	0.072	76	
Upen Area	3,609	Open soll/grass/larmiano	0.251	906	0.108	390	
wetland/pond	7,297	Grass/busnes	0.359	2,617	0	0	
AREA TOTAL	79,648						'
				R	UNOFF TO	TAL (m [*] /a)	6,462
				INFILTE	RATION TO	TAL (m³/a)	22,129
			TOTAL WATER	ACCUMULATING	IN THE PO	DND (m³/a)	9,079
Cold Creek Catchment Are	38						
2B							
Woodland	8,089	Trees, bushes	0.287	2,322	0.072	582	
Open Area	37,690	Open soil/grass/farmland	0.251	9,460	0.108	4,071	
AREA TOTAL	45,779						
				R	UNOFF TO	TAL (m³/a)	4,653
				INFILTE	RATION TO	TAL (m³/a)	11,782
Marsh Creek Catchment A	rea						
3B				1 495	0.070		
		*** 1 (0.007	1 0 / 6			
	6,880	Trees, bushes	0.287	1,975	0.072	495	
Open Area	6,880 9,866	Trees, bushes Open soil/grass/farmland	0.287 0.251	2,476	0.072	495 1,066	
Open Area 3C	6,880 9,866	Trees, bushes Open soil/grass/farmland	0.287 0.251	2,476	0.072	495 1,066	
Woodland Open Area 3C Woodland	6,880 9,866 9,710	Trees, bushes Open soil/grass/farmland Trees, bushes	0.287 0.251	2,476	0.072	495 1,066 699	
Open Area 3C Woodland Open Area	6,880 9,866 9,710 32,121	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.287 0.251	2,476	0.072 0.108 0.072 0.108	495 1,066 699 3,469	
Woodland Open Area 3C Woodland Open Area 3D	6,880 9,866 9,710 32,121	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.287 0.251	2,476 2,787 8,062	0.072 0.108 0.072 0.108	495 1,066 699 3,469	
Woodland Open Area Woodland Open Area 3D Woodland Open Area	6,880 9,866 9,710 32,121 6,781 7,765	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes	0.287 0.251 0.287 0.251 0.287 0.287	2,476 2,787 8,062 1,946	0.072 0.108 0.072 0.108	495 1,066 699 3,469 488	
Voodland Open Area 3C Woodland Open Area 3D Woodland Open Area 25	6,880 9,866 9,710 32,121 6,781 7,786	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.251 0.287 0.251	2,476 2,787 8,062 1,946 1,954	0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841	
Voodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F	6,880 9,866 9,710 32,121 6,781 7,786	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.251 0.287 0.251	2,476 2,787 8,062 1,946 1,954	0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841	
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area	6,880 9,866 9,710 32,121 6,781 7,786 4,546 2,140	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes	0.287 0.251 0.251 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 330	
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339	
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339	
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3 192	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.251 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339 2,777 345	
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area ABEA TOTAL	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122 594	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339 2,777 345	
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339 2,777 345	10 647
Woodland Open Area 3C Woodland Open Area 3F Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a)	10,847
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTE	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO 3ATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 7AL (m ³ /a) TAL (m ³ /a)	10,847 33,165
Woodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTE	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a)	10,847 33,165
Woodland 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area 3H Woodland Open Area AREA TOTAL	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Open soil/grass/farmland	0.287 0.251 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTE 289,891	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO RATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a) TAL (m ³ /a)	10,847 33,165
Voodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area*	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTF 289,891 RACTION INFILTF	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a) TAL (m ³ /a)	10,847 33,165 289,891
Voodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area*	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497 1,055,518	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.251 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTF 289,891 RACTION INFILTF	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO 3ATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a) TAL (m ³ /a)	10,847 33,165 289,891
Woodland Open Area 3C Woodland Open Area 3F Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area* SITE FOOTPRINT TOTAL SITE RUNOFF TOTAL (m ³ /	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497 1,055,518 a)	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTE 289,891 RACTION INFILTE	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO RATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a)	10,847 33,165 289,891 21,961
Voodland Open Area 3C Woodland Open Area 3F Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area* SITE FOOTPRINT TOTAL SITE RUNOFF TOTAL (m ³ / SITE INFILTRATION TOTA	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497 1,055,518 (a) L (m ³ /a)	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTF 289,891 RACTION INFILTF	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO RATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a)	10,847 33,165 289,891 21,961 356,967
Voodland Open Area 3C Woodland Open Area 3F Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area* SITE FOOTPRINT TOTAL SITE RUNOFF TOTAL (m ³ / SITE INFILTRATION TOTA Volume of Compensation	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497 1,055,518 a) L (m ³ /a) Required	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTF 289,891 RACTION INFILTF	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO RATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m³/a) TAL (m³/a) 10 TAL (m³/a)	10,847 33,165 289,891 21,961 356,967
Voodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area* SITE FOOTPRINT TOTAL SITE RUNOFF TOTAL (m ³ / SITE INFILTRATION TOTA Volume of Compensation	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497 1,055,518 a) L (m ³ /a) <i>Required</i> COPMENT COND	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTF 289,891 RACTION INFILTF	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO 3ATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a) 0 TAL (m ³ /a) COMPENSA	10,847 33,165 289,891 21,961 356,967 TION AMOUNT (m ³ /a)
Voodland Open Area 3C Woodland Open Area 3D Woodland Open Area 3F Woodland Open Area 3H Woodland Open Area 3H Woodland Open Area AREA TOTAL Area of extraction Open Area* SITE FOOTPRINT TOTAL SITE RUNOFF TOTAL (m ³ / SITE INFILTRATION TOTA Volume of Compensation DEVEI Pre-Development Condition	6,880 9,866 9,710 32,121 6,781 7,786 4,546 3,140 38,572 3,192 122,594 807,497 1,055,518 'a) L (m ³ /a) <i>Required</i> LOPMENT COND	Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Trees, bushes Open soil/grass/farmland Open soil/grass/farmland	0.287 0.251 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251 0.287 0.251	1,975 2,476 2,787 8,062 1,946 1,954 1,305 788 11,070 801 R INFILTF 289,891 RACTION INFILTF 289,891 RACTION INFILTF 289,891 RACTION INFILTF	0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 0.072 0.108 UNOFF TO 3ATION TO	495 1,066 699 3,469 488 841 327 339 2,777 345 TAL (m ³ /a) TAL (m ³ /a) COMPENSA	10,847 33,165 289,891 21,961 356,967 TION AMOUNT (m ³ /a) 0

NOTES:

1) Infiltration rate derived from Table 2 of MOE (1995).

2) Woodland and grass/farmland areas based on 2007 site conditions.

3) "m³/a" means cubic metres per annum.

4) Compensation amount=[infiltration under pre-development conditions]-

-[infiltration during post-development conditions]. 5) * indicates runoff will be toward excavation and become part of groundwater.

6) Totals may vary due to rounding.

APPENDICES

,

.

APPENDIX A

GEOLOGIC DETAILS

۶	BOREHOLE LOG EXPLANATION FORM	
۶	BOREHOLE LOGS	
۶	MOE WATER WELLS CO-ORDINATES	TABLE A-1
\triangleright	MOE WATER WELL RECORDS	TABLE A-2

▶ NEW WATER WELL A027288 DESCRIPTION TABLE A-3

.

BOREHOLE LOG EXPLANATION FORM

This explanatory section provides the background to assist in the use of the borehole logs. Each of the headings used on the borehole log, is briefly explained.

DEPTH

This column gives the depth of interpreted geologic contacts in metres below ground surface.

STRATIGRAPHIC DESCRIPTION

This column gives a description of the soil based on a tactile examination of the samples and/or laboratory test results. Each stratum is described according to the following classification and terminology.

<u>Soil Clas</u>	sification *	Terminology	Propertion
Clay	<0.002 mm		
Silt	0.002 to 0.06 mm	"trace" (eg. trace sand)	<10%
Sand	0.06 to 2 mm	"some" (eg. some sand)	10% - 20%
Gravel	2 to 60 mm	adjective (eg. sandy)	20% - 35%
Cobbles	60 to 200 mm	"and" (eg. and sand)	35% - 50%
Boulders	>200 mm	noun (cg. sand)	>50%

* Extension of MIT Classification system unless otherwise noted.

The use of the geologic term "till" implies that both disseminated coarser grained (sand, gravel, cobbles or boulders) particles and finer grained (silt and clay) particles may occur within the described matrix.

The compactness of cohesionless soils and the consistency of cohesive soils are defined by the following:

<u>COHESI</u>	IONLESS SOIL	<u>COHESIVE SOIL</u>			
Compactness	Standard Penetration Resistance "N", Blows / 0.3 m	Consistency	Standard Penetration Resistance "N", Blows / 0.3 m		
Very Loose	0 to 4	Very Soft	0 to 2		
Loose	4 to 10	Soft	2 to 4		
Compact	10 to 30	Firm	4 to 8		
Dense	30 to 50	Stiff	8 to 15		
Very Dense	Over 50	Very Stiff	15 to 30		
•		Hard	Over 30		

The moisture conditions of cohesionless and cohesive soils are defined as follows.

Drier Then Diestie Limit	
PL - About Plastic Limit TPL - Wetter Than Plastic Limit WTPL - Wetter Than Plastic Limit	t a Timit
2	TL - About Plastic Limit TPL - Wetter Than Plastic Limit WTPL - Much Wetter Than Plastic

STRATIGRAPHY

Symbols may be used to pictorially identify the interpreted stratigraphy of the soil and rock strata.

MONITOR DETAILS

This column shows the position and designation of standpipe and/or piezometer ground water monitors installed in the borehole. Also the water level may be shown for the date indicated.

Where monitors are placed in separate boreholes, these are shown individually in the "Monitor Details" column. Otherwise, monitors are in the same borehole. For further data regarding seals, screens, etc., the reader is referred to the summary of monitor details table.

SAMPLE

These columns describe the sample type and number, the "N" value, the water content, the percentage recovery, and Rock Quality Designation (RQD), of each sample obtained from the borehole where applicable. The information is recorded at the approximate depth at which the sample was obtained. The legend for sample type is explained below.

SS	=	Split Sp	oon	G\$ =	Grab Sample
ST	=	Thin Wa	illed Shelby Tube	CS =	Channel Sample
AS	=	Auger F	light Sample	WS =	Wash Sample
CC	=	Continu	ous Core	RC =	Rock Core
% R	ecov	ery =	Length of Core Re Total Leng	eovered Per Ru	<u>n</u> x 100

Where rock drilling was carried out, the term RQD (Rock Quality Designation) is used. The RQD is an indirect measure of the number of fractures and soundness of the rock mass. It is obtained from the rock cores by summing the length of core recovered, counting only those pieces of sound core that are 100 mm or more in length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total length of core run. The classification based on the RQD value is given below.

RQD Classification	<u>RQD (%)</u>
Very poor quality	< 25
Poor quality	25 - 50
Fair quality	50 - 75
Good quality	75 - 90
Excellent quality	90 - 100

TEST DATA

The central section of the log provides graphs which are used to plot selected field and laboratory test results at the depth at which they were carried out. The plotting scales are shown at the head of the column.

Dynamic Penetration Resistance - The number of blows required to advance a 51 mm diameter, 60° steel cone fitted to the end of 45 mm OD drill rods, 0.3 m into the subsoil. The cone is driven with a 63.5 kg hammer over a fall of 750 mm.

Standard Penetration Resistance - Standard Penetration Test (SPT) "N" Value - The number of blows required to advance a 51 mm diameter standard split-spoon sampler 300 mm into the subsoil, driven by means of a 63.5 kg hammer falling freely a distance of 750 mm. In cases where the split spoon does not penetrate 300 mm, the number of blows over the distance of actual penetration in millimetres is shown as $\frac{xBlows}{x}$

Water Content - The ratio of the mass of water to the mass of oven-dry solids in the soil expressed as a percentage.

mm

- W_P Plastic Limit of a fine-grained soil expressed as a percentage as determined from the Atterberg Limit Test.
- W_L Liquid Limit of a fine-grained soil expressed as a percentage as determined from the Atterberg Limit Test.

REMARKS

The last column describes pertinent drilling details, field observations and/or provides an indication of other field or laboratory tests that were performed.

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 14, 2005

SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

GROUND ELEVATION: 189 m ASL (estimated)

				ST		ļ	S	AMPLE	E		CONE PENETRATION	WATER	
	DE	ртн	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR		ż	~	х Я		"N" VALUE	CONTENT	% REMARKS
	(1	m)		GRA	DETAILS	TYPE	' VA	WA	ECO	RQD	10 20 30		_
	,			РНҮ			LUE	FER	VERY	(%)	SHEAR		н 6
F	F	0.2	TOPSOLL:		1						SIRENGIA		<u> </u>
			SAND:									1	
			MEDIUM TO COARSE SAND, SOME GRAVEL, MOIST.			GS-1							
	2												
						GS-2							
													<u>^</u>
	<u> </u>											:	
-		4.6			-								
			GREVISH BROWN CLAYEY SILT, APL.										
						GS-3							
	-												
		7.0											
	f		BOREHOLE TERMINATED AT 7.0 m IN CLAYEY SILT.										
	3												
									· ··· ·			:	
	0												
	2					<u> </u>							
ĺ													
1	4												
	6												
							1			1			
										•			
_ -'	8												
500													
2/ 4								1					
levalon .	,	÷					1						
<u>د ا</u>			•	•					L		L		

PROJECT NAME: CODRINGTON PROPERTY

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

DATE: APRIL 22, 2005

SUPERVISOR: DBK

REVIEWER: AJC

- 1

GROUND ELEVATION: 184.78 mASL

		s			s	AMPLI	E		CO! PENETI	NE RATION	w	ATE	R	
DEPTH		RATI	MONITOP		-		% F		"N" V/	ALUE		NTE	NT %	REMARKS
(m)		GRA	DETAILS	TYP	5	% WA	RECC	ROD	10 2 	0 30	10	20	30	
		VHA		m		TER	WER	(%)	SHEAR	1				
0	SAND:						<u> </u>		STRENG	тн	1¥p		۲ŸL	
	SOME GRAVEL, TRACE SILT, MOIST TO DRY.					• •	· · · · ·			:		÷		SURVEY COMPLETED IN 2007
		****		GS-1								:		
2													:	
											:			
				00.0										
				65-2										4
4					<u> </u>			ļ						
												;		
197 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199				GS-3			••••							
6														
					-							:		
												į	-	
8				GS-4										
											:			
10				••••							:			
				69-5										
12 11.9	SAND AND CRAVEL		-		ļ									
	FINE TO COARSE SAND AND FINE GRAVEL, TRACE TO SOME SULT SATURATED BELOW 11.9													
	m.			GS-6										
14														
	BOREHOLE TERMINATED AT 14.3 m IN SAND			-										
	rano vilontale.													
16					1									
				<u> </u>										
].						
18														
					1				1					
								l						
20							ļ							

PROJECT NO.: 051738.00

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

DATE: APRIL 25, 2005

SUPERVISOR: DBK REVIEWER: AJC

GROUND ELEVATION: 188 m ASL (estimated)

			ST			s	AMPL	Ē		CONE PENETRATION	WATER	
1	тертн	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR		ż	9	% 7		"N" VALUE	CONTENT %	REMARKS
	(m)		GRAP	DETAILS	TYPE	. AT	6 WAT	ECO/	RQD	10 20 30		
20			YHY			Ē	ËR	/ERY	(%)	SHEAR STRENGTH	11 Wp WL	
		SAND: (Continued)			GS9							
		Continuedy										
ŀ												
22	_										-	
					GS10	-						
24												
·· ·					GS11			-	. ·			
26	_											
					0512							
28					0312	;						
	28.7	<u>SILT:</u>			 							
		BROWN SILT, TRACE CLAY, WET TO MOIST.					· · ·				:	
30					GS13					-		
32					ļ							
	32.3	SAND	1									
		FINE TO MEDIUM SAND, DRY.			GS14	1						
34	·											
	34.7				GS15							
		SAND.				ļ			1			
36	i									:		
										l		
									•.			
	1											
38	-									-		
1g 200												
2/ 4												
Vojsvaj 40												

JACCER HIMS LIMITED

PAGE 2 OF 2

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: _____ APRIL 26, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

SUPERVISOR: DBK

GROUND ELEVATION: 197 m ASL (estimated)

				S			s	AMPLE	Ī		CONE PENETRATION	w	/ATE	R	
	DE	отн		RAT	MONITOR		4.		% I		"N" VALUE	co	NTE	NT %	REMARKS
	(m)	STRATIGRAFILO DESCRETION	GRA	DETAILS	TYPE	√- VA	%WA	RECO	RQD	10 20 30	10	20 1	30 .L	
				РНҮ			TUE	TER	VER	(%)	SHEAR	₩n			
			SAND: BROWN SILTY FINE SAND TRACE CRAVEL								SIRENGIA		:		
			TRACE CLAY, WET.										į		
		1.5				GS1							÷		
	2		SAND AND GRAVEL: MEDIUM TO COARSE SAND AND FINE TO										:		
			MEDIUM GRAVEL, LAYERED AND VARIABLE, OCCASIONAL COBBLE OR BOULDER, TRACE										÷		
			SILI, DRI.			GS2									
-	4														
													÷		
	 6					655									
-	8														
						GS4									
													-		
ŀ	10														
						GS5									
	12														
						GS6									
						·									
-	14														
	16					GS7					÷				
f															
							Í.			ŀ					
ļ	18					GS8		·							
2003															
5mv /															
aton 2															
2	20		L		I	{	<u> </u>			ļ	I	1			

JACCER HIMS LIMITED

UPDATED: July 12, 2005

PAGE 1 OF 2

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

DBK

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 26, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL GROUND ELEVATION: 197 m ASL (estimated)

SUPERVISOR: **REVIEWER: AJC**

CONE PENETRATION SAMPLE STRATIGRAPHY WATER CONTENT % * "N" VALUE DEPTH (m) MONITOR REMARKS STRATIGRAPHIC DESCRIPTION Ż % WATER RECOVERY TYPE 10 20 30 10 20 30 RQD DETAILS VALUE 4 8 SHEAR STRENGTH . Wp WL 20 SAND AND GRAVEL: (Continued) 20.4 GS9 <u>SAND:</u> FINE TO MEDIUM SAND, TRACE TO SOME GRAVEL, DRY. 22 G510 24.0 24 <u>SILT:</u> BROWN SILT, SOME FINE SAND, DRY. VERY HARD DRILLING GS11 26 26.2 BOREHOLE TERMINATED AT 26.2 m IN SILT. 28 30 32 34 36 38 Revalon 2/ Aug 2003

JACCER HIMS LIMITED

UPDATED: July 12, 2005

PAGE 2 OF 2

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

200 m ASL (estimated)

GROUND ELEVATION:

DBK SUPERVISOR:

REVIEWER: AJC

CONE PENETRATION SAMPLE WATER STRATIGRAPHY CONTENT % * "N" VALUE DEPTH STRATIGRAPHIC DESCRIPTION MONITOR REMARKS Ż % WATER RECOVERY 10 20 30 10 20 30 ROD TYPE (m) DETAILS VALUE Ļ 1 1 (%) SHEAR STRENGTH Wp WL 0 0.2 TOPSOIL: BROWN SILTY SAND TOPSOIL SAND: FINE TO MEDIUM SAND, TRACE TO SOME GRAVEL, GRAVEL IN LAYERS, TRACE TO SOME SILT, VARIABLE, DRY TO MOIST. GS1 2 GS2 GS3 6 8 GS4 10 GS5 12 GS6 14 GS7 16 18 GSB Aug 2003 19.2 SAND: FINE TO MEDIUM SAND, SOME SILT, TRACE

DATE: APRIL 16, 2005

PROJECT NAME: CODRINGTON PROPERTY

CLIENT: ST. MARYS CEMENT INC. (CANADA)

SUPERVISOR: DBK

DATE: _____APRIL 16, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

GROUND ELEVATION: 200 m ASL (estimated)

REVIEWER: AJC

				S			S	AMPLI	5		CONE PENETRATION	WATER	
				RAT					%		"N" VALUE	CONTENT %	
	DE (I	PTH m)	STRATIGRAPHIC DESCRIPTION	IGR	MONITOR DETAILS	3	v v	% W	REC	80	10 20 30	10 20 30	REMARKS
				APH		m	ALU	ATE	ÖVE	D (3	trtrt		
	20			~				ער	RY	6)	SHEAR STRENGTH	We WL	
			SAND: (Continued)			GS9		÷ .					
			(,										
	22												
						· ·							
						GS10							
	4												-
<u> </u>													
						0044						- 1	
						6511							
	26												
F													
						0510							
						0312							
-	20					<u> </u>							
						ļ							
	-	29.6	70.1.										
+	30		BROWN SANDY SILT TILL, MOIST.			GS13						:	
		31.4											
			SAND:										
┢	32		FINE SAND, TRACE SILT, MOIST TO 33.8 m, SATURATED BELOW 33.8 m.			<u> </u>							
						GS14							
┝	34												
						GS15							
											:	· ·	
-	36					ļ	<u> </u>	<u> </u>					
	┝	36.4	BOREHOLE TERMINATED AT 36.4 m IN FINE										
			SAND.							· ·			
	38					<u> </u>				[
g]							
M													
2]	
Revalo	40									ļ			

JACCER HIMS LIMITED

PAGE 2 OF 2

PROJECT NO.: 051738.00

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 14-15, 2005 SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL GROUND ELEVATION: 201 m ASL (estimated)

Т

T

REVIEWER: AJC

- T

			ST			S	AMPLI	E		PE	CONE	TION	w	TER	٤	
			RAT			_		%			r val	UE	CON	TEN	Т %	D7H A D7O
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	ÏGR	MONITOR DETAILS	∣₹	Z	% W	REC	R	10	0 20	30	10	20 3	50	REMARKS
			APF		- m	AL	ATE	ÖVE	Õ	1	r1	¹			*{	
20			Ż			L L	70	ERY	%)	SHE	EAR RENGTH	1	Wp		WL	
		SAND:			GS9						:		:	-		
		(Continued)														
													:			
													÷			
22	-															
								-					1			
					GS10								:			
					ļ											A
24	-				 							-				
					·	· · •	l					-				
					GS11		· ·					-				
					11.00	No. 2 C. Com										
26																
												÷	÷	1		
					1		1							1		
					GS12									-		
28														:		
												-				BOREHOLE DRY ON
					GS13									:		CEMENTED LAYER
70	<u> 29.0</u>				+											
30		SAND, SOME GRAVEL - REFUSAL.									÷					
							ł									
												:				
32																
	ļ															
												1				
													ļ			
34																
									1							
											:					
36																
	1															
									ł							
			1		1	Į.			ļ .							
38			1			<u> </u>			<u> </u>							
8																
5					1				1							
2			.					1								
alon																
문 <u>40</u>		Tasan	<u>.</u>		<u> </u>	<u> </u>	0005	l		I			<u> </u>			

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

PAGE 1 OF 2

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 14-15, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

SUPERVISOR: DBK

GROUND ELEVATION: 201 m ASL (estimated)

			ST			s	AMPLI	E		CONE PENETRATION	w	ATER		
D	EPTH	STRATIGRAPHIC DESCRIPTION	RATIO	MONITOR		Ż	%	% R	_	"N" VALUE	COI		r %	REMARKS
	(m)		3RAP	DETAILS	TYPE	VAL	WAT	ECOV	R			20 3	0 E	
0			Ŧ			ŪĒ	FR	ERY	(%)	SHEAR STRENGTH	₩₽		 WL	
	0.2	T <u>OPSOIL:</u> BROWN SANDY SILT TOPSOIL.					· .							
		<u>SILT:</u> BROWN CLAYEY SILT, SOME FINE SAND.			GS1									
,														
											:			
					GS2									
														-
4												•		
	4.6	SAND:												
		TO GRAVELLY, VARIABLE, LOCALLY SILTY, MOIST TO DRY.			GS3									
6	-													
8														
					GS4									
					• • • • • •									
10														
					<u> </u>									2
					GS5									
12	-													
					GS6									
14														
16					GS7									
	1													
					Į.,									
18					GS8					-				
VU0 201														
01 Z/														
<u>20</u>			<u></u>		<u> </u>	<u> </u>	2005	1						

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 22, 2005

SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL

GROUND ELEVATION: 187 m ASL (estimated)

REVIEWER: AJC

		, , , , , , , , , , , , , , , , , , ,	ST			S	AMPLI	Ξ		CONE PENETRATION	WATER	
	EPTH	STRATIGRAPHIC DESCRIPTION	RATIG	MONITOR	4	ż	%	% RE	7	"N" VALUE	10 20 30	REMARKS
	(m)		RAPH	DETAILS	YPE	VALU	WATE	COVE	() 00			
20	<u> </u>	GRAVELLY SAND.	~			п	א 	RY	\$	SHEAR STRENGTH	W _P W _L	
· · · · ·		(Continued)			GS9		•					
	21.6											
22		BOREHOLE TERMINATED AT 21.6 m IN GRAVELLY SAND			İ							
24												
26	-				· · · ·							
28												
30	_											
32												
					ļ							
34												
											:	
36												
	ļ											
									•			
38												
5003	1									1		
5my /												
evation 2							1					
× <u>1 + U</u>	_l	L		1	1	1		ŧ	1	f	.1	

JACCER HIMS LIMITED

UPDATED: July 12, 2005

PAGE 2 OF 2

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

SUPERVISOR: DBK

REVIEWER: AJC

GROUND ELEVATION: 187 m ASL (estimated)

				ST			S	AMPLE			CONE PENETRATION	WATE	R	
	DEPTI	4	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR		Ļ.	5	% F		"N" VALUE	CONTER	\T%	REMARKS
	(m)			GRA	DETAILS	TYPE	¦ ∖	6 WA	RECO	RQD	10 20 30	10 20	30 	
				РНҮ			LUE	TER	VERY	(%)	SHEAR	⊦ We		
			SAND: BROWN FINE TO MEDIUM SAND, SOME SILT.								JILENGIII			
	••		SOME GRAVEL TO GRAVELLY, MOIST.					,						
						651								
2	_													
						:								
						GS2								
														4
4	4													
						GS3			··· ·	÷				
		7.0												
			SAND: BROWN FINE SAND, SOME SILT TO SILTY,	•••••										
8			MOIST.											
						GS4								
		9.4	SAND:		1	•	•							
10	4		FINE TO MEDIUM SAND, SOME COARSE SAND, SOME GRAVEL, MOIST.							•				
						GS5								
12	2									••				
						GS6								
14	÷													
	1	4.3	SAND											
			BROWN FINE TO MEDIUM SAND, TRACE SILT,											
						GS7								
16	5										· ·			
	.													
	1	6.8	GRAVELLY SAND:		-									
			SILT, SATURATED BELOW 17.1 m.											
11	3					GS8	 							
2003														
2/ Au										ļ				
invision of	, ·													
Reacion 2/ Aug 2003	<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	<u>4.3</u>	SAND, SUME GRAVEL, MOIST. SAND: BROWN FINE TO MEDIUM SAND, TRACE SILT, MOIST. GRAVELLY SAND: GRAVELLY FINE TO COARSE SAND, TRACE SILT, SATURATED BELOW 17.1 m.			CS5 CS6 CS7 CS8								

JACCER HIMS LIMITED

DATE: ______APRIL 22, 2005

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 18-19, 2005 SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

GROUND ELEVATION: 194 m ASL (estimated)

				ST			s	SAMPLE	1		CONE PENETRATION	w.	ATE	R	
	DE	ртн	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR		ż	28	% Д		"N" VALUE	CON	ITE	NT %	REMARKS
	(m)		GRAF	DETAILS	TYPE	VAL	\$ WAT	IECO/	ROD	10 20 30	10	20 1	30 1	
	o			ΥH٢			UE .	뗫	/ERY	(%)	SHEAR STRENGTH	i Wp		WL	
			SAND: SILTY FINE TO MEDIUM SAND, SOME CLAY,												
			MOIST.			GS1									
	2												:		
													-		
						GS2							-		
	4														*
		4.6							•				÷		
			GRAVELLY SAND: GRAVELLY SAND TO SAND AND GRAVEL,										-		
			SOME SILT, DRY TO MOIST.			GS3							:		
	6					<u> </u>									
	8					l							:		
						GS4									
	·· .											:			
	10											:			
						GS5									
	12														
						GS6									
	14						<u> </u>								
				l		GS7									
	16									İ					
<i>n</i>	18					GS8									
ug 200.															
1 2/ A												ļ			
Revaion	20							<u> </u>							
	_														

JACCER HIMS LIMITED

UPDATED: July 12, 2005

PAGE 1 OF 2

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 18-19, 2005

SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

GROUND ELEVATION: 194 m ASL (estimated)

				ST			5	AMPL	E		CONE PENETRATION	w	ATE!	R	
	055	ты		RAT	MONITOP				% †		"N" VALUE	coi	NTEN	IT %	REMARKS
	(1	n)	STRATISIAFRIC DESCRIPTION	IGRA	DETAILS	TYP	× ×	%WA	RECC	ROD	10 20 30	10 	20	30 	ILEMALING
	_			PHY		"	LUE	TER	VER) (%)	SHEAR	<u>ا</u>			
2			GRAVELLY SAND:	-		659			×		STRENGTH	WP		WL	
			(Continued)										1		
	,	21.6	SAND:												
	-		FINE TO MEDIUM SAND, SOME FINE GRAVEL, DRY.												
						GS10		:					÷		
													1		
24															
													÷		COMPLETION.
						GS11							-		REFUSAL DUE TO BOULDER OR POSSIBLE CEMENTED
							•••••								LAYER.
2	6														
		26.5				ļ							-		
			BOREHOLE TERMINATED AT 26.5 m IN SAND.										:		
													:		
2	8											:			
												:			
												:			
30						<u> </u>							÷		
32												. :			
	-														
3	4														
												:			
3	6														
3	8									<u> </u>					
2003															
5m /2															
valor															
& <u> </u> 4 J▲	CCZI	а И пас	3 LIMITED		LUPDATED:	j July	12,	2005	I		I	<u> </u>			

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 16-18, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

GROUND ELEVATION: 201 m ASL (estimated)

SUPERVISOR: DBK REVIEWER: AJC

		· · · · · · · · · · · · · · · · · · ·			T				•••••	1	CÓN	E				
			STR			د ا	AMPL	⊨ 		PENETRATION		WATER		R		
D	EPTH	STRATIGRAPHIC DESCRIPTION	ATIC	MONITOR		Ň	*	% R	_	""	N" VA	LUE		*16	70	REMARKS
	(m)		SRAF	DETAILS		A	WAT	ECO	ĝ	- 	020 4	- 30 		-20 L	30	
20			ΥH			Ē	Ĥ	/ERY	(%)	SH	EAR	nu	⊢ ₩₀			
		SAND:			GS9					3.,						
		(Continued)												-		
									• • • •					÷		
22																
					GS10									:		
24																
					0511							÷		•		BOREHOLE DRY ON
• •• ••••••					0311											COMPLETION.
26						• • • •										REFUSAL DUE TO BOULDER OR POSSIBLE CEMENTED
																LAYER.
										ļ						
					GS12											
28	-											-				
									• • • • •			÷				
							· ·		•							
30	29.9							· · · ·								
		BOREHOLE TERMINATED AT 29.9 m IN FINE TO MEDIUM SAND AND SILT.												:		
												-				
32																
34	-															
						ļ			ļ							
36	-							.,,								
									,							
].									
- <u>38</u>	-															
1 500																
2/ Wi			ļ					İ					1			
vaten																
2 40					*					1						

JACCER HIMS LIMPTED

UPDATED: July 12, 2005

PAGE 2 OF 2

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DBK

DATE: APRIL 16-18, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

201 m ASL (estimated)

GROUND ELEVATION:

REVIEWER: AJC

SUPERVISOR:

CONE PENETRATION SAMPLE STRATIGRAPHY WATER CONTENT % * "N" VALUE DEPTH STRATIGRAPHIC DESCRIPTION MONITOR REMARKS z % WATER RECOVERY 10 20 30 10 20 30 TYPE RQD (m) DETAILS VALUE 1, 1 . 1 (%) SHEAR STRENGTH WL Wp 0 SAND: BROWN FINE SAND, SOME SILT, TRACE GRAVEL, MOIST. GS1 2 GS2 4 GS3 6 7.0 SAND: FINE TO COARSE SAND, TRACE TO SOME FINE GRAVEL, TRACE SILT, MOIST. 8 GS4 10 GS5 12 GS6 14 GS7 16 16.8 SAND AND SILT: BROWN FINE TO MEDIUM SAND AND SILT, MOIST. GS8 18 Revelon 2/ Aug 2003

PROJECT NAME: CODRINGTON PROPERTY

CLIENT: ST. MARYS CEMENT INC. (CANADA) BOREHOLE TYPE: BECKER HAMMER DRILL

DATE: APRIL 21, 2005

SUPERVISOR: DBK

GROUND ELEVATION: 198 m ASL (estimated)

			S		ĺ	s	SAMPL	E		CONE	WATER	
DE	ртн	STRATIGRAPHIC DESCRIPTION	FRATI	MONITOR		ź	*	%		"N" VALUE	CONTENT %	REMARKS
(m)		GRAP	DETAILS	TYPE	VAL	6 WATI	ECOV	ROD			
20			HY			Ē	99	ERY	(%)	SHEAR STRENGTH	W _P W _L	
· .		<u>SAND:</u> (Continued)			GS9							
22										-		
					6510							
24												•
									·			
					GS11		 					
26				8								
										- 		
											-	
28					GS12							
	28.7											REFUSAL DUE TO HARD DRILLING AND PLUGGED RODS
	20.1	BOREHOLE TERMINATED AT 28.7 m IN			<u> </u>					· .	÷	
30		SAND.										
										-		
70												
52										-		
										-		
36										-		
							·					
									ļ			
38										-		
57 67												
/7 uo												
40												

JAGGER HIMS LIMITED

PROJECT NO.: 051738.00

REVIEWER: AJC

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: _____APRIL 21, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

SUPERVISOR: DBK

GROUND ELEVATION: 198 m ASL (estimated)

		۲ SAMPLE		E		CONE PENETRATION	WATER				
DEPTI	STRATIGRAPHIC DESCRIPTION	RATIO	MONITOR		ż	%	% R	-	"N" VALUE	CONTENT %	REMARKS
(m)		RAP	DETAILS	TYPE	VAL.	WATI	ECOV	ĝ	10 20 30	10 20 30	
0		ΗY			Ë	ER	ERY	(%)	SHEAR STRENGTH	i⊢−−−i Wp Wi	
	SAND: BROWN FINE TO MEDIUM SAND, TRACE TO										
	SUME SILT, UNIFORM, DRY TO MOIST.			GS1		•				÷	
									-		
				050					-		
				032						:	÷
4					 						
				653				· .			
6											
	7.0 SAND:										
8	FINE TO COARSE SAND, TRACE TO SOME FINE GRAVEL, MOIST.										
				GS4			*******				
				· ·							
101	0.4										
	SILT: FINE SANDY SILT, WET.			000							
1	1.4 SAND			GSS							
12	FINE TO COARSE SAND, TRACE SILT, TRACE GRAVEL, MOIST TO WET.			ļ							
	• · · · · · · · · · · · · · · · · · · ·										
				GS6							
14 1	4.0										
1	4.3 <u>SILT:</u> <u>SAND:</u>		-								
	GRAVELLY MEDIUM TO COARSE SAND, TRACE SILT, OCCASIONAL COBBLE OR BOULDER,										
	DRT TO MOIST.			GS7							
10											
								ļ			
18				GS8							
20											

JACCER HIMS LIMITED

REVIEWER: AJC

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

SUPERVISOR: DBK

REVIEWER: AJC

GROUND ELEVATION: 197 m ASL (estimated)

				ST			5	SAMPL	E		CONE PENETRATION	WATER		
	ne	ртн	STRATIGRAPHIC DESCRIPTION	RATI	MONITOP		ブ	<i>\$</i>	% F		"N" VALUE	CON	TENT %	REMARKS
	1	m)		GRA	DETAILS	TY B	A	6WA	ÊCO	RQD	10 20 30	10	20 30	
	~			РНҮ		'''	L E	TER	VERY	(%)	SHEAR	⊢ ₩₀	w	
			SAND AND GRAVEL: BROWN FINE TO COARSE SAND AND FINE TO								JIRENGIN			NOTE:
			COARSE GRAVEL, TRACE SILT, OCCASIONAL BOULDER, DRY.						:					BOREHOLE ORIGINALLY RECORDED AS BOREHOLE 18
	2													
						GS2								
	4											:		¢
									•				:	
						GS3							÷	
	6													
		76									i			
	.8	7.0	SILT: BROWN SILT, SOME FINE SAND, INCREASING											
			FINE SAND WITH DEPTH, DRY TO MOIST TO 16.8 m, SATURATED BELOW 16.8 m.			GS4								
												ĺ		
	10										-			
	ĺ					095								
						635								
	12							<u> </u>						
	14	:				GS6								
						GS7								
	16					<u> </u>								
										ľ				
	18					GS8				ļ				
2003														BOREHOLE TERMINATED DUE
/ Mug		19.2												TO HEAVING FINE SANDS.
vsion 2			BOREHOLE TERMINATED AT 19.2 m IN SILTY FINE SAND.							ļ				
å	20			<u> </u>		1	<u> </u>	0005	Ļ	I	<u> </u>	L		

DATE: APRIL 28, 2005

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

DATE: _____APRIL 28, 2005

SUPERVISOR: DBK

GROUND ELEVATION: 197 m ASL (estimated)

		ST		s	AMPL	€		CONE PENETRATION	w	ATER	2	
DEPT	H STRATIGRAPHIC DESCRIPTION	RATIGF	5	N	% V	% REO	22	"N" VALUE 10 20 30	10	20 3	Т% 30	REMARKS
,		арну	PE	VALUE	VATER	DOVERY	ע (%)	SHEAR				
20								SIREROIA				
										:		
22												
										:		
												-
24												
26												
										÷		
28												
30												
								-				
32					 							
36								-				
									-			
38												
40												

JAGGER HIMS LIMITED

REVIEWER: AJC

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 18, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

SUPERVISOR: DBK REVIEWER: AJC

GROUND ELEVATION: 193 m ASL (estimated)

				ST			S	AMPLE	≣		CONE PENETRATION	w,	ATER	
	DE	ртн	STRATIGRAPHIC DESCRIPTION		MONITOR		ż	ې	्र म		"N" VALUE	CON	TENT %	REMARKS
	(n)		GRAF	DETAILS	TYPE	' VAI	6 WAT	ECO	RQD	10 20 30	10	20 30	
	20			γH¢			,UE	ĒŖ	/ERY	(%)	SHEAR	₩Р	I WL	
ľ			SAND: (Continued)			GS9						•		
			(continued)									:		
+	22											:		
						GS10								
	24													
						GS11								
												:		
ł	26											į		
											·		:	
						GS12								
	28		- TRACE COARSE SAND AND FINE								-			
			GRAVEL BELOW ± 28 m.											
			- SATURATED BELOW ± 29 m.											
	30													
						GS13					:			
	32													
						G514								
	34					ļ		 						
						GS15								
	36							ļ						
		36.3				+								
			BOREHOLE TERMINATED AT 36.3 m IN FINE TO MEDIUM SAND.							ŀ				
	38					<u> </u>								
g 2003	ļ													
2/ MJ														
Revalon	40													

JACCER HIMS LIMITED

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

GROUND ELEVATION: 193 m ASL (estimated)

DATE: APRIL 18, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

r

REVIEWER: AJC

Í				S			s	AMPLI	Ξ		CONE PENETRATION	W	ATER	
				RA			_		8		"N" VALUE	CON	ITENT %	
	DE	PTH m)	STRATIGRAPHIC DESCRIPTION	ពធ្យ	MONITOR DETAILS	F	z	% V	REC	77	10 20 30	10	20 30	REMARKS
	· ·	,		ÅP	2217420	PE	VAL	VATI	ő	9	<u> </u>	l	ÌÌ	
				ΥH			Ē	R	ERY	(%)	SHEAR	⊢ We		
ŀ	<u> </u>		SILT AND SAND:								GIRENGIN			
			BROWN SANDY SILT TO SILTY SAND, TRACE				• •							
						GS1		• •	•					
								· ·						
	2													
										1				
						GS2								
														¢
	4					ļ								
						GS3							-	
ł	_6									<u> </u>		:		
												•		
		7.0												
	Γ		SAND: BROWN FINE TO MEDIUM SAND TRACE TO											
			SOME SILT, DRY TO 26 m, MOIST 26 m TO											
ł	<u> </u>		29 m, SATURATED BELOW 29 m, OCCASIONAL COBBLE OR BOULDER.			GS4								
		:												
										ĺ				
	10													
						1								
	ļ					GS5						•		
	12													
]						ĺ
						GS6								
						ļ								
	14													
						[
						007		[
	1.5					05/		1		ļ				
	10						<u> </u>	<u> </u>			-			
						·	1			ŀ				
										Ì				
	18					GSB				1				
2								[
20						1			ĺ					
Ň,								1	İ	1				
on 2,												ļ		
Renal	20										ļ			

SUPERVISOR: DBK

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

SUPERVISOR: DBK

DATE: APRIL 20, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL GROUND ELEVATION: 197 m ASL (estimated)

REVIEWER: AJC

			sī			s	AMPL	E		CONE PENETRATION	WATER	
	DEPTH	STRATIGRAPHIC DESCRIPTION	RATIC	MONITOR		z	*	% RI	-	"N" VALUE	CONTENT %	REMARKS
	(m)		RAP	DETAILS	YPE	VALL	WATE	COVE	Õ (<u> </u>	l	
20	-	CAND.	~			Ē	~	RY	ઁ	SHEAR STRENGTH	Wp WL	
		(Continued)			GS9							
						н н.						
22	_											
					GS10							
											1	
24												
					GS11	•	····					BOREHOLE DRY ON
26												COMPLETION. REFUSAL DUE TO BOULDER
	26.5											OR CEMENTED LAYER.
		SAND.										
28												
						· ···			··· ··			
30												
32												
1.4												
38	-									-		
Aug 20												
alon 2/												
å <u>40</u>			I				<u> </u>			<u> </u>	1	

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

PAGE 1 OF 2

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 20, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

SUPERVISOR: DBK REVIEWER: AJC

GROUND ELEVATION: 197 m ASL (estimated)

DEPTH (m) STRATIGRAPHIC DESCRIPTION Image: Content % Property of the state of t	REMARKS
SAND: BROWN FINE TO MEDIUM SAND, TRACE SILT, TRACE GRAVEL, MOIST. SAND: BROWN FINE TO MEDIUM SAND, TRACE SILT, TRACE GRAVEL, MOIST. GS1 SAND: BROWN FINE TO MEDIUM SAND, TRACE SILT, TRACE GRAVEL, MOIST.	
0 Rest of the strength We will BROWN FINE TO MEDIUM SAND, TRACE SILT, TRACE GRAVEL, MOIST. GS1 GS1	
CS2	
4. <td></td>	
GS3	
6	
7.0 SAND: BROWN FINE TO COARSE SAND SOME	
BRAVEL TO GRAVELLY, MOIST.	
G55	
SAND: SILTY BROWN FINE TO MEDIUM SAND, UNIFORM, MOIST.	
14	
GS7	
GSB	
19.2 SAND:	
20 MEDIUM SAND WITH SOME FINE GRAVEL, MOIST.	

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

PAGE 1 OF 2

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

DATE: APRIL 27, 2005 SUPERVISOR: DBK

REVIEWER: AJC

GROUND ELEVATION: 196 m ASL (estimated)

			ST			S	AMPL	3		CONE PENETRATION	w/	ATER	
	DEPTH	STRATIGRAPHIC DESCRIPTION	RATIG	MONITOR		z	%	% रह	71	"N" VALUE	CON	TENT %	REMARKS
	(m)		SRAPH	DETAILS	TYPE	VALL	WATE	ECOVE	å Gerooria			20 30 	-
0	1	SANDI	Υ Γ			Ē	Ŕ	RY	3	SHEAR STRENGTH	Wp	WL	
		BROWN FINE TO MEDIUM SAND WITH SOME TO TRACE FINE GRAVEL, TRACE TO SOME SILT,											
		DRY TO MOIST.			GS1								
2													
					· ·								
					GS2						:		
4													^
									· .				
					GS3								
Ť	-												
8					GS4								
ļ									• •		:		
10	-												
					085								
					635							:	
12	-												
	c.												
	13.1	SAND AND GRAVEL:			GS6								
14	_	TO MEDIUM GRAVEL, TRACE TO SOME SILT, DRY.									:	:	
							ļ						
					657								
16						ļ	ļ						
									••••				
18					GS8								
2003													
2/ Mg													
TAG	CER HIM	a Tanyara			bily	12	2005	•		· · · · · · · · · · · · · · · · · · ·			

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 27, 2005

SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

GROUND ELEVATION: 196 m ASL (estimated)

				ST			s	AMPLE	<u>=</u>		CONE PENETRATION	WA	TER	
	NEPT	н	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR		7		% F		"N" VALUE	CON	FENT %	REMARKS
	(m)	"		GRA	DETAILS	P	Υ.	%WA	RECC	RQD	10 20 30	10 2	20 30	IL III III
				PHY		10	LUE	TER	VER	- (%)	SHEAR	<u>ا</u>		
20	,		SAND AND GRAVEL:			GS9			<u> </u>		STRENGTH	11P	WL	
			(Continued)				• •							
		116												
22	È	21.0	SAND:											
			FINE TO MEDIUM SAND, OCCASIONAL COBBLE OR BOULDER, TRACE TO SOME											
			FINE GRAVEL, DRY.			GS10								
														٩
24	_													
									·······					
						GS11								
														BOREHOLE DRY ON COMPLETION.
26	<u> </u>													REFUSAL
		26.6				ł								
			SAND.											
28														
								· ···.						
							· ·					:		
30											-	:		
						ŀ								
32	-					<u> </u>							:	
34												:		
Ť	<u> </u>											:	:	
										ļ			:	
												:		
30	5						<u> </u>							
										<u> </u>		:		
				ĺ								1		
3	B													
2002														
2/ 1]		
evaton														
<u>مر</u> ا		Hne	LIMPTED	J		Julv	12.	2005			<u> </u>	<u> </u>		L

SAMPLE

%

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 27, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL GROUND ELEVATION: 197 m ASL (estimated)

REVIEWER: AJC

CONE PENETRATION

"N" VALUE

SUPERVISOR: DBK

WATER CONTENT %

STRATIGRAPHY DEPTH STRATIGRAPHIC DESCRIPTION MONITOR REMARKS ź % WATER RECOVERY TYPE RQD 10 20 30 10 20 30 (m) DETAILS VALUE 1 + (%) SHEAR STRENGTH WL Wp D TILL: GREYISH BROWN CLAYEY SILT TILL, APL -DTPL. GS1 2 GS2 GS3 6 8 GS4 10 GS5 DIFFICULT DRILLING. 11.9 12 BOREHOLE TERMINATED AT 11.9 m IN SILT TILL. 14 16 18

JACCER HIMS LIMITED

Aug 2003

Revelon 2/

UPDATED: July 12, 2005

PAGE 1 OF 1

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

PAGE 1 OF 2

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 19-20, 2005 SUPERVISOR: DBK

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

GROUND ELEVATION: 185 m ASL (estimated)

			STI			s	AMPL	Ξ		CONE PENETRATION	WATER	
DI	EPTH	STRATIGRAPHIC DESCRIPTION	RATIG	MONITOR	_	ż	%1	% RE	R	"N" VALUE 10 20 30	CONTENT %	REMARKS
	(m)		RAPH	DETAILS	YPE	VALU	WATE	COVE	1QD (1			
0		SAND:	7	·		m	R	RY	(ه	SHEAR STRENGTH	We WL	· · · · · · · · · · · · · · · · · · ·
		FINE TO MEDIUM SAND, SOME SILT, TRACE CLAY, MOIST.										
					GS1							
2												
					GSZ							•
4												
	4.6	SII T										
		BROWN SANDY SILT, SOME CLAY, OCCASIONAL COBBLE, MOIST.			653							
6								· · · ·			· · ·	
8												
					GS4							
•••••												
10						• •						
	11.3				GS5							
12		TILL: GREVISH BROWN SANDY SILT TILL, TRACE										
		TO SOME CLAT, MOIST.										
					GS6	: 				1		
14										:		
, ,												
1.6					GS7							
										1		
	16.8	SAND AND GRAVEL:					-					
		BROWN FINE TO MEDIUM SAND, UNIFORM, MOIST.										
18					GS8							
i Z												
20 JACC	e Hna	s Limited	<u> </u>	UPDATED:	<u> </u> Julv	12.	2005			ļ	l	l

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 19-20, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

SUPERVISOR: DBK REVIEWER: AJC

GROUND ELEVATION: 185 m ASL (estimated)

			ST			s		E		CONE PENETRATION	w/	ATER	
וס	EPTH	STRATIGRAPHIC DESCRIPTION	RATIO	MONITOR		ź	%	% RI	Ŧ	"N" VALUE	CON	TENT %	REMARKS
	(m)		RAPH	DETAILS	TYPE	VALL	WATE	ECOVE	QD (20 30 	
20		0.WD	4			m	Ϊ	ERY	%)	SHEAR STRENGTH	Wp	WL	
		<u>SAND:</u> (Continued)			GS9				••••••				
22													
					0510						:		
					0010						:		
24	24.2												REFUSAL - BOULDER OR POSSIBLE CEMENTED LAYER.
· · · · · · ·		BOREHOLE TERMINATED AT 24.2 m IN			†							:	
					[
26											:		
											:		
28													
					• • • •							:	
30													
-													
32													
34													
36													
38							<u> </u>						
Aug 200													
n 2/ 1							ļ						
40													

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: BECKER HAMMER DRILL

DATE: APRIL 27, 2005

SUPERVISOR: DBK

REVIEWER: AJC

GROUND ELEVATION: 189 m ASL (estimated)

				ST			s	AMPL	3		CONE PENETRATION	W,	ATER	
	DEF	тн	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR	****	7		% F		"N" VALUE	CON	ITENT 9	REMARKS
	(n	n)		GRA	DETAILS	TYPI	ľ VA	6WA	RECO	RQD	10 20 30 l,l,	10	20 30	_
				РНҮ			LUE	TER	VER) (%)	SHEAR	<u> </u>		
F	, 		SAND:						Υ.		STRENGTH	WP	W	
	•		BROWN FINE TO COARSE SAND, SOME FINE GRAVEL, DRY.					· · · · ·					-	
						GS1								
	,													
F	<u> </u>											:		
													-	
						GS2							-	4
													:	
	<u>.</u>													
						GS3						-	-	
	5												:	
	в												1	
						GS4								
ľ												1		
	0													
						GS5								
1	2													
			•			CS6								
1	4	14.3												
			SAND: BROWN FINE TO MEDIUM SAND, UNIFORM,											
			DRY.					1						
	6					GS7				Ì				
F	Ĭ													
1	8					GS8								
											1			
Aug 2(ĺ				
2 u														
Reval	20													

PROJECT NAME: CODRINGTON PROPERTY

PROJECT NO.: 051738.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: APRIL 27, 2005

BOREHOLE TYPE: BECKER HAMMER DRILL

REVIEWER: AJC

SUPERVISOR: DBK

GROUND ELEVATION: 189 m ASL (estimated)

			ST			S	AMPL	=		PENETRATION	W,	ATER	
			RA			_		%		"N" VALUE	CON	ITENT %	
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	IGR	MONITOR DETAILS	Ŧ	N. /	% W	REC	R	10 20 30	10	20 30	REMARKS
			AP		PE		IATE	3VOC	ğ	. <u> </u>	- l .		-
20			₹			E	3	ERY	%)	SHEAR STRENGTH	W _P		
		SAND:			GS9							:	
		(Continued)											
22													
					GS10								
	23.8				ļ								REFUSAL DUE TO CEMENTED LAYER.
24		BOREHOLE TERMINATED AT 23.8 m IN											
1		2010.											
								•			1		
									· ·				
26													
28											÷		
									· · ·			-	
30											ļ .	:	
										:			
							1						
32	ł				ļ								
										-			
	1		1										
1.						1				1 .			
	1								·	-			
					ĺ	ĺ		ĺ					
36									L				
1	ļ								ļ				
	ł					ļ	ļ			ļ			
38					ļ	 				4			
2003							ļ						
₩.	1					1]				
2			1	1	1								
avalor 0							ļ						
≈ <u>1</u> _+0	.L		I	L		I	1	L	l	L			L

PAGE 2 OF 2

PAGE 1 OF 2

PROJECT NAME: LEVEL I HYDROGEOLOGIC STUDY, CODRINGTON PROPERTY PROJECT NO.: 0-051777.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: OCTOBER 12, 2005

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

GROUND ELEVATION: 190.96 mASL

SUPERVISOR: TAS

REVIEWER: VGM

			<u> </u>					F		CONE		
			STR			T			1	PENETRATION	WATER CONTENT %	
D	EPTH	STRATIGRAPHIC DESCRIPTION	ATIG	MONITOR		ź	%	RE	7	"N" VALUE 10 20 30	10 20 30	REMARKS
	()		RAP	DETAILS	YPE	A	NATI	8	8			
0			ΥH			Ē	뷨	ERY	(%)	SHEAR STRENGTH	W _P W _L	
		SAND: BROWN FINE TO COARSE SAND SOME FINE			SS1	6	10	25				
		GRAVEL, MOIST, VERY DENSE TO DENSE.			-						<u>j</u>	
									- ·			
2					SS2	61	2	60		61		
-	1											
	1				SS3	>50	2	20		>50		Ψ
4	_											
					SS4	52	2	65		52		
					S.							
6	-					76		40				
					333		2	40		4	\$	
	7.6							75				
8	-	SAND: BROWN FINE TO MEDIUM SAND, TRACE FINE			330	>50	4	35		>50		
		TO COARSE GRAVEL, MUIST, VERT DENSE.			3 1							
					8			20		>50	9	
10					33,			20		~Ju		
					·							
					556	/5	-	40		/5		
12												
											0	
					SS9	100	3	70		100	Ţ	
					94 St							
14	-							<u> </u>	<u> </u>			
	ļ				SS10	125	4	10		125	6	
16	1								ļ	-		
					SS11	>120	-	40		>120		
18	-				· · ·					-		
					SS12	2 >50	6	30	1	>50		
2					. 1			1				
	· ·				CC1.	5 510	_	20		>100		
2 20	<u> </u>		1	<u>1 .</u>		1 - 100	<u>'</u>	120	1		1	l

PAGE 2 OF 2

PROJECT NAME: LEVEL I HYDROGEOLOGIC STUDY, CODRINGTON PROPERTY

108 mm I.D. HOLLOW STEM AUGER

PROJECT NO.: 0-051777.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: OCTOBER 12, 2005

BOREHOLE TYPE:

GROUND ELEVATION: 190.96 mASL

SUPERVISOR: TAS REVIEWER: VGM

CONE PENETRATION SAMPLE STRATIGRAPHY WATER CONTENT % % "N" VALUE DEPTH (m) MONITOR REMARKS STRATIGRAPHIC DESCRIPTION Ż % WATER RECOVERY 10 20 30 10 20 30 TYPE RQD DETAILS VALUE Ļ Т % SHEAR STRENGTH We WL 20 SAND: Continued. SS14 125 8 20 125 22 24 25.9 26 SAND: GREY FINE TO COARSE SAND, TRACE SILT, SATURATED, VERY DENSE. SS15 185 12 100 185_ 28 SS16 >100 _ 10 >100 29.0 BOREHOLE TERMINATED AT 29.0 m IN FINE TO COARSE SAND. 30 32 34 36 38 Aug 2003 Revsion 2/

JACCER HIMS LIMITED

PAGE 2 OF 2

PROJECT NAME: LEVEL I HYDROGEOLOGIC STUDY, CODRINGTON PROPERTY PROJECT NO.: 0-051777.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: OCTOBER 12, 2005 SUPERVISOR: TAS

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

GROUND ELEVATION: 184.98 mASL

REVIEWER: VGM

			ST			s	AMPL	E		CONE PENETRATION	WATER	
DE	PTH	STRATIGRAPHIC DESCRIPTION	RATIG	MONITOR		ż	%	% RE	7	"N" VALUE	CONTENT %	REMARKS
((m)		RAPH	DETAILS	YPE	VALU	WATE	ECOVE	ΩD (3			
20			R	tata nata di Sala nata		m	7	IRY	ě)	SHEAR STRENGTH	Wp WL	
		<u>SAND:</u> Continued.			5510	121	- · · ·	30		121		
22					SS11	112	3	35		112		
					SS12	160	_	40		160		*
24								-				
					SS13	>100	2	30	••••	>100		
26		- SATURATED BELOW 26 m.								105		
					5514	100	2	70			N :	
28												
				. .								
	29.6				SS15	33	17	100				
30		BOREHOLE TERMINATED AT 29.6 m IN FINE TO MEDIUM SAND.			· ·					G	•	
										-		
32												
	:											
34												
36												
38						<u> </u>			 	-		
Trib 2000									1			
on 2/ J												
₹ <u>40</u>	<u>.</u>	• Transmin										

PAGE 1 OF 2

PROJECT NAME: LEVEL I HYDROGEOLOGIC STUDY, CODRINGTON PROPERTY PROJECT NO.: 0-051777.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: OCTOBER 12, 2005

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

GROUND ELEVATION: 184.98 mASL

SUPERVISOR: TAS

REVIEWER: VGM

			S			s	AMPL	E		CONE PENETRATION	WATER	
D	PTH	STRATIGRAPHIC DESCRIPTION	RATIO	MONITOR		ź	%	* 7	_	"N" VALUE	CONTENT %	REMARKS
	(m)		SRAPE	DETAILS	TYPE	VALU	WATE	ECOVE	ROD (1			
0			r	N.N. N.N.			R	- -	6)	SHEAR STRENGTH	WP WL	
	0.6	BROWN, FINE TO MEDIUM SAND, TRACE SILT, TRACE FINE GRAVEL, TRACE ROOTLETS, WET,			55				··· ·			
		SILT:										
2		GREY, CLAYEY SILT, WTPL, STIFF TO 4 m, VERY SOFT TO FIRM BELOW 4 m TO 8.2 m.										
					SS1	12	13	100	·	•		,
4										/		
					552	0	25	90				
						E	70	00		•		
					1 333		30	00			ľ	
8	82									L		
		SAND: BROWN FINE TO MEDIUM SAND, VERY			SS4	1	24	100				
		DENSE, MOIST TO 26 m, SATURATED BELOW 26 m.			SS5	>100	26	30		>100		
10							· .	· ·				
							ļ					
12												
					SS6	>120	7	40		>120		
14					SS7	>100	6	30		>100	6	
										5		
16												
					SS8	120	-	25		120		
18						ļ		ļ				
2002					SS9	>100	4	40		>100	•	
* /s												
20									<u> </u>			

PAGE 1 OF 1

PROJECT NAME: LEVEL I HYDROGEOLOGIC STUDY, CODRINGTON PROPERTY

PROJECT NO.: 0-051777.00

CLIENT: ST. MARYS CEMENT INC. (CANADA)

DATE: OCTOBER 12, 2005

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGER

SUPERVISOR: TAS

GROUND ELEVATION: 182.81 mASL

REVIEWER: VGM

		<u></u>	st		SAMPLE					CONE PENETRATION	WATER	
DI	EPTH (m)	STRATIGRAPHIC DESCRIPTION	RATIG		1	ż	% V	% RE	R	"N" VALUE 10 20 30	CONTENT %	REMARKS
	,		RAPHY	DETRIED	/PE	VALUE	VATER	COVER	JD (%)	SHEAR		
		SILT AND CLAY: BROWN CLAYEY SILT TO SILTY CLAY, APL,			SS1	8	16	60		STRENGTH	••••••••••••••••••••••••••••••••••••••	
· · · · ·		FIRM, BELOW 3 m VERY SOFT TO SOFT, WTPL.			552	6		60		•		
2					SS3	8	23	90				
					SS4	1	-	3				
					SS5	4	26	100		}	e e e e e e e e e e e e e e e e e e e	¢
4					SS6	1		100				
	5.1	BOREHOLE TERMINATED AT 5.1 m IN SILT			SS7	2	26	100		•	•	
6		AND CLAY.										
					· · .			•••				
10												
12												
14						-						
									1			
16												
]									-		
									-			
18	-									-		
100 For												
2												
		1			4	·	I	1	L		1	1

PROJECT NAME: CODRINGTON PROPERTY HYDROGEOLOGICAL STUDY

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER

SUPERVISOR: DBK

PROJECT NO.: 0-051777.00

DATE COMPLETED: Mar 30, 2006

GROUND ELEVATION: 182.6 mASL

REVIEWER: JTB

DEPTH (m) STRATIGRAPHIC DESCRIPTION Image: Contrent of the state o	s
OD STRATIGRAPHIC DESCRIPTION Image: Additional system of the system	<u>13</u>
0.0 TOPSOIL: BLACK TOPSOIL, FINE TO MEDIUM SAND. SS1 50 58 50 0.3 m SAMPLE INTERVAL SAND AND GRAVEL: BROWN FINE TO COARSE SAND AND GRAVEL, SOME COBBLES, TRACE FINE SAND AT DEPTH, LOOSE TO VERY DENSE AT 1.4 m, MOIST TO SATURATED AT 8.4 m. SS1 50 58 50 0.3 m SAMPLE INTERVAL 10 SATURATED AT 8.4 m. SS2 6 25 0.46 m SAMPLE INTERVAL 20 SS3 132 33 132 0.46 m SAMPLE INTERVAL	
0.0 TOPSOIL FINE TO MEDIUM SAND. SAND AND GRAVEL: BROWN FINE TO COARSE SAND AND GRAVEL, SOME COBBLES, TRACE FINE SAND AT DEPTH, LOOSE TO VERY DENSE AT 1.4 m, MOIST TO SATURATED AT 8.4 m. SS1 50 58 50 0.3 m SAMPLE INTERVAL 10 SATURATED AT 8.4 m. SS2 6 25 0.4 m SAMPLE INTERVAL	
BLACK TOPSOL, FINE TO MEDIUM SAND. 0.3 m SAMPLE INTERVAL SAND AND GRAVEL; BROWN FINE TO COARSE SAND AND GRAVEL, SOME COBBLES, TRACE FINE SAND AT DEPTH, LOOSE TO VERY DENSE AT 1.4 m, MOIST TO SATURATED AT 8.4 m. 0.3 m SAMPLE INTERVAL 1.0 SATURATED AT 8.4 m. SS2 6 20 SS3 132 33 20 SS4 91 60 919 0.51 m SAMPLE INTERVAL	
BROWN FINE TO COARSE SAND AND GRAVEL, SOME COBBLES, TRACE FINE SAND AT DEPTH, LOOSE TO VERY DENSE AT 1.4 m, MOIST TO SATURATED AT 8.4 m. 20 20 20 20 20 20 20 20 20 20 20 20 20	
10 LOOSE TO VERY DENSE AT 1.4 m, MOIST TO 10 SATURATED AT 8.4 m. 20 0 20 0 20 0 20 0 0 0	
2.0 3.0 5.53 5.54 5.	
20 0 553 132 33 132 0.46 m SAMPLE INTERVAL 20 0 0 0 554 91 60 917 0.51 m SAMPLE INTERVAL	
2.0 SS3 132 33 1328 0.46 m SAMPLE INTERVAL 2.0 SS4 91 60 919 0.51 m SAMPLE INTERVAL	
0 0 0 91 60 91 0.51 m SAMPLE INTERVAL	
0.3 m SAMPLE INTERVAL	
4.0 SS6 120 50 120 0.3 m SAMPLE INTERVAL	
5.0 S57 134 67 1049 0.3 m SAMPLE INTERVAL	
SSB 100 0.08 m SAMPLE INTERVAL SPLIT SPOON REFUSAL TO	0
6.0 SPLIT SPOON REFUSAL TO ADVANCE	0
0.15 m SAMPLE INTERVAL SPLIT SPOON REFUSAL TO	ō
SS11 33 SPLIT SPOON REFUSAL TO	0
Simulation Simulation Simulation Simulation 43	
	3ERS
GRAVEL.	

PAGE 1 of 1

PROJECT NAME: CODRINGTON PROPERTY HYDROGEOLOGICAL STUDY

CLIENT: ST. MARYS CEMENT INC. (CANADA)

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER

GROUND ELEVATION: 182.6 mASL

SUPERVISOR: DBK REVIEWER: JTB

				v,			s	AMPLI	E		CONE PENETRATION	۱۸/ ۸	TFP	UTM CO-ORDINATES
				TRA				_	%			CONT	ENT %	UTM Zone: <u>18</u> NAD: <u>83</u> Easting: 278794
	DE	EPTH (m)	STRATIGRAPHIC DESCRIPTION	TIGR	MONITOR DETAILS	7	N V	% W	REC	Ro	10 20 30	10 :	20 30	Northing: <u>4892548</u>
				NPH		Ъщ.	ALUE	ATE	OVE	0 (%)	<u> </u>		<u> </u>	1
	0.0			7			•11	מ	RY		SHEAR STRENGTH	We	l	REMARKS
			TOPSOIL: BLACK TOPSOIL, FINE TO MEDIUM SAND	<u>7</u> , 6, 7										DOLLARD DEFINAL ALLOT (ID) P
		0.3 —	SAND AND GRAVEL:	3 > 2		SS1	7		75		٩			BOULDER REFUSAL IN 1ST HOLE
			BROWN FINE TO COARSE SAND AND GRAVEL, SOME COBBLES, FINE SAND SEAM FROM 3.5 m TO	00										
	1.0		3.9 m, LOOSE TO VERY DENSE AT 0.7 m, MOIST TO WET AT 3.4 m	2										
				૾ૺ૾		SS2	30		75		7			
				\$ \$ 6										
						S S3	130		86		130			
	2,0			00										0.36 m SAMPLE INTERVAL
				S ()										
				80		SS4	133		87		133			
	w/			e e										0.38 m SAMPLE INTERVAL
	3.0			ං										
				00										
						SS5	47		75		471			
	·· - ·····			- Co										
	4,0	-		0.00		SS6	134		100		134			
				04 04										0.46 m SAMPLE INTERVAL
	•••••			5								-		
08				\$ } {		S S7	114		94		114			
8/18/	5.0			000							Anna an Anna			0.46 m SAMPLE INTERVAL
SDT SDT				\$ \$							станиция ст			
SIC.C		5.5 —	BOREHOLE TERMINATED AT 5.5 m IN SAND AND	0/0		558			100		Annual I is sum			0.15 m SAMPLE INTERVAL SPLIT SPOON REFUSAL TO
S BA			GRAVEL.								And a subscription of			ADVANCE
HIM	6.0	{												
GER														
JAG														
GPJ														
RTY.	. , 0	1												
OPE														
N PR														
NTO	8.0													
1H 00														
1777										1				
M 05		ļ		1						1				
1 UT	.9.0													
ΥIT														
SIC)														
MET														
) W/E	10.0	ļ												
GICE														
OLO														
Щ С Ц				1					ł					
독	.11.0	1		1						Į				

Jagger Hims Limited

PAGE 1 of 1

PROJECT NO.: 0-051777.00

DATE COMPLETED: Mar 30, 2006

TABLE A-1 MOE WATER WELL COORDINATES HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO

and a second state of the		-	UTM
BOREHOLE	CONSESSION	LOT	EASTING
1.D.	#	#	NORTHING
271	5	24	282147
			4892832
4444	5	25	281620
	Ĵ	~~	4893120
<u> </u>	E	97	280720
5001	5	21	4902920
4764	E		4092020
4/04	5	21	201000
	E	00	4692000
5242	5	20	200340
4504		08	4091000
4504	5	28	280700
4700			4890840
4580	5	29	280480
			4891180
3352	5	33	278700
	_		4890170
5043	5	34	278120
			4891640
4117	5	34	278150
			4891470
5051	5	34	278100
			4891580
3099	5	34	278600
			4890175
3291	6	29	279900
			4892700
272	6	34	277668
			4892041
274	7	2	277091
			4889741
273	7	2	277140
			4889979
4675	7	2	277140
			4890340
3358	7	2	277150
			4890200
3627	7	31	278037
			4895671
5070	7	31	278100
			4896100
4302	7	33	277420
			4895570
5330	7	36	276200
			4895480
3194	8	2	276140
			4893250
278	8	2	276611
			4891588
279	8	2	276646
			4891501
3149	8	3	275975
			4893375
3094	8	3	276025
			4893200
280	8	3	276142
		~	4891469
3841	9	2	275850
			4895300
4243	9	3	2/5820
			4893820
286	9	3	2/0000
		~	4093920
3148	3	3	AR03035

TABLE A-2

MOE WATER WELL RECORDS

0	۵	¢	ø	ø	ĝ . (0 [.] 0	Ø.	0 (): O-	0	0.	9); Q.	0 .	¢.		
	s Lay aldr Mgrd Onl) Lay Stws Mgru 1153 Rvi stas Sale 01155	A FLOTO 14	LAY 0014 3LUE CL2Y P\$16 0003	ME N	N SE UTOS Anu Uriz Gref Clay Anu Sand Qusú S ² 4m	052 UNAN 0054 10 John 1004 Clay 3344 Sand 1044 Clay 9346 Sand	J FARMS Luan Odj2 Bryri Clay Lean Odj2 Bryri Clay Doso Grey	IN REAL CARD DECOMPANY No.19 6PSY HUAN STNS MLUE CLAY SIRE AGVL	CGVL VIS? Cam Jim DG12 GRVL CLAY D018 Sand D026 Blue Clay	JAVL SANU JUYS 4 J C 2.Lat 4.107 GRFY Sand 3ret Sand GrvL 9120	JKVĽ ÚIZA Er rojert Sand Loam Suft Goui Ssnu Srft Goui	54%5 LOUS A090 GREY 57%5 PCKD 3130 GREY 51Y1 PCKD 3146 GREY 50CK HARD 3205	₩ TLLTAM		יניריוינאניינייי איילאריאני דא טערנפדוא פייזאן וואטבא	
2 8200 1 100	10110 10100 10100 10100 10100 10000 10000 10000 10000 10000 1000000	MULTON PRDG 0 0769 0	0050 A 0050 A 0050 A	V ANTOM GREY C S AHO O	5 HE M G G G G G G G G G G G G G G G G G G	6 8 4 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NELSCH SCHN C	SCHUM 00CLAY	0189 68489 664481 64481	174L1 4761 4761 115	6.2864 6.267 6.288 6.288 6.288 6.288 6.288 6.288 6.288 7.28 7.28 7.28 7.28 7.28 7.28 7.28	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HLLS		NU WAT	
			•	-											SCREEV	
					Þ	·	e,						•	•	4.5	
	01:		00	00	UN O	15	ST L	63	D.U	η			0'		- 1	
	3 07130		10 02:00	5 12:00	10 01:42	10 03:00	6 03:00	60:+0 E	4 34:00	20 03:30			5 04:30		LAND COUN	
	0		0 †	46	36	10	80	10	85	26			5 ·		JABER	
	5		.0	-	-0	4	0 4	T Ú T	ย 1	R L			. 0		IDRTHU	
	N 10	9	т 0	S	5	3	3	37	0	- - 	Ĵ۵		۵ <u>۲</u>		Ex S1	·
	50 50	106	900	3 Ù 5	005	60 U	8 Û U	8 1 2	00	610	920	•	00		HAT	٠
	بر بر	a a	FR	भ	ች ጽ	я 2	и И	<u>م</u>	ас Ц	4 7 7 7 7	SU		2 14.		KIND KIND	
	Ą	•	ç	Ŷ	ŝ	Ð	φ	¢.	.O	Ŷ	Ŷ		.o		PAG CS6	
·	2194	6 2 5 4 5 4	0105	2334	44.5	1811	253 3	1375	1875	9105	21)4		2553			
	287	1/53	1.52	3/76	5112	B/17	6179	1/70	2/76	71/6	7/72		1175		-1396	
	25 UT	3 2 5	50 1(542	+20 1	428 0	4600	550_1	4 4 8 1	4 3 u U	515 0				05-09-	
	276780 7 1855320	275755 1894981	282147 4 1832832	251629 4893120	280726 4892820	291583 4892800	236340 4891960	250700 4550840	230480 4841180	0710532 C07875	278120 4851640		576150		116 116	
	491.64	270	571 <i>,</i>	444	361	451	5242	4564	45 ĉÚ	355	5043		4117	*	STEM	•
	ç ç	σ	54	1 1 1	51	27	28	23	л М	Ĺ.Ľ.	54		34		LA SY	
	14		· V		5	in	ŷ	n	'n	ц	۰î		ĩn		DAT TY	
	U)											,			MELI VELI	
	CON	сом	CUN	CUN	CON	CUN	CON	CON	CUN	CON	CUN		NOD		HATER	
(•	0	0		P	00	0	Ø	e e	ę.	Ø:	, ₿* (¢ 0	r ÷		

. 4

•

nge (ogersland) and (ogersland) nager og (ogersland)

	AUNICAL STAND	1 1 1 1 1 1 1 1 1 1 1 1 1 1	19. ST	and the second			107 A.	「「「「「」」	a for	10.00 B		L XON	IUABE	RE E NO	COUNT	Y = 45		GROUN	ID WATER	BULLET	128 N 1	1961	
) ()	CONCESSI ETC CONTINUE	NG NG	L01 • BR	WELL ND IGHTUI	EASTING EASTING NORTHING 4 TOWNShi	ELEV FEET	DATE D	RILLER	L N N N N N N N N N N N N N N N N N N N	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2				2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 2	TINE Arinn Arinn	WATER Use	обрти DEPTH Feet	LENG LENG LENG LENG LENG LENG LENG	UEPTAS]	JANER En Feet Jations	10 WF 8X18N	41CH	
4						•										•		,	ESNO 00	VD LDAM 30 62EY	0020 CGVL	8 R W N 0 2 0 0	
•																			CRHN GR	L SAND	0670	GREY	
磬	CUN	υ	3 ¢	5051	275160 	515	C8/72	2104	9	fβ	155	92	92	12	10:00	00			SUTCHER	<pre><u pre="" uces<=""><pre>KU UCES</pre></u></pre>		-	
<u>.</u>					4841584														BRWN SAN	VD LOAM	SOFT SOFT	0004	
- '																			FGVL CL	AU ULAT	0080	2 X X S C 4 1 X X	
'n																			CLAY STR	(† 6149 00 01100	GREY	SHLS	
	CUN	Ś	46	00 - 2 F	775600	36.2		1				•	:			,	• •		STAR HAF	0120 U20	1 2 2	2112	
		x	1		4890175	n 11 7	T / / T	4552	. .	×	9400	ŝ	0 M	10	r0:F6	2			P&RSUNS alck LUA	ក 14 តំហិល្ខាំ	80 MN	ci av	
																			0007 685	27 CLAY	2000		
	CON	\ C	a									1							SAND 005	56.00 66	2	1 1 1 2	
	;	.	n		4888450	5 1 0	52761	522	þ	ഷ ച.	61133	4 0	70	202	04:00	01			DTONAS X	YMANTA:	веши	17.00	
	CUN	÷	5	1265	000076	112.7			ì	ł							*		LIN ONST	1342 E	5247	1 × 5	
		,	r t		4892700	¢ 7	21/20	1875	0	х х	0018	72	18	in.	34:00	01			01e3ETS	a.			
	CON	٦ ٢	34	272	277668	610	68/61	4829	ŝ	н Х	0136	22	22	502	05:11	00			CLAT GKV SULEY VI	AL VELS. SCTOR			
-	СОМ		~1	274	277091	425	10/66	1806	o,	<u>بر</u> ۲	0052	m	62	2	12:00	00		·	GRYL MSN	10 0136 1-N			
					4889741						1		1			1			FSND 0.02	C HPAN	1045	ŝLUE	
	CUN	-	N	273	277140	1.5.2	22165		4	C 1		0	ľ	6 (. ,			rLAY 005	אלט לו	0052		
			I	•	5795684				D	2	1102	57	ç	- - - -	00:40	2			14212400 CIAY Mén	U 88705	201	0,00	
																			UREY CLA	Y 6054	05v0	00.70	
7	сои	7	1 9	4675	277140	425	27770	4409	-0	2 2	0065	4	. 60	200	12:15	00			PRVL MSN	0 0075	GRVL	1200	
92					4890240								1	•	 	ļ			SRAN CLA	Y 0015	GREY GREY	CLAY	
7						•									•				0342 GKE	T NPAN	0020	GREY	
	205 C	2	~	1	77160					4			4						68VL 708 68VL 005	u 0052 4 686Y	GKET LMSN	6647 0069	
7	-		t	נ ר ר	4530200	0 7 7	71760	9 T 2 C	5	α α' Γ η	9064 9067	10	4 7	с 6 П	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	ı		CARTER J 1001 001	3 1. 5			
6										•									LAUG UDI GREY SAM	4 6861 0 0086	CC PLAN CC PLAN CC PLAN	0060 GRVL	
3)	CON	7	i * }	493a	276767	475	07/78	9 T-J S	 D	а; 11	9055	14	50	¢	3:00	ä			0067 MCL&UGAL	IN JOHN			
6					4891340														FRUG 001	1 6254	CLâY	0055	
)	CUN	1	'n	276	276851	450	09/60	4811	1	Ч.	9.57	8	60	4) uE:0	2			6881 68V Plue à	L 6057			
0	×				488545														LOAN 000	4 dLUE	CLAY	0057	
	CUN	1	ب ن	1662	277050 4896125	4 2 J	03/71	4921	- 9	X :	0086	23	23	203	4:00	5		- <u>-</u> .	OINGMAN			- 5 	
A																				0 6610 6 6147	1.0000	GREY GREY	
																		-	600 P.081	T)			

.

.

1

.

.

• 2

9· Ø	Q .	9	Ø	¢.	Ŷ	, gen	97 *1	a-	Ψ.	•	• .	₹	.	* •	•	·
псн	F S ND	CLAY	FSNJ	0045 0082	£100	ũ N N D C S N N	GREY	1722 5671	0019 0018	8610	686Y 0052	-	A S ND G S ND	GP 27 S AND	CLAY	
FO WH Exten	110,	58EY 0079	0612	GRVL GRVL	H P A N	0003 0067L 0063	0042	GREY BRWN	STNS	SAND	0010 68VL	0042	CLAY 0665	0025 68VL 0073	6887 6887 0975	
22 21 21 21 21 21 21 21 21 21 21 21 21 2	FURD SND 1	й15 (87 Г. (FURC SND	DLD SND	010	× 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2	LOR	1001	155 172 N 0023	0092	CLAY GREY	48YCE SILT	811 0030 0076 0076	0 L A Y 6 R E Y 2 0 4 1	67VL 68VL	
OW45 IN F MATI	4 816 302 C	A N N N N N N N N N N N N N N N N N N N	M b16 001 C 020 C	R ARN V 22 M K C M	ج ۲۲ و 177 و	A A A C C A A A A A A A A A A A A A A A	N D N O N D N O N D N O N D N O N O N O N O N O N O N O N O N O N O	C K L	R0 R0 1 2	× 10 7 × 1 7 × 1 7 × 1	1 F AND 048	000	R C A C A C A C A C A C A C A C A C A C	1 6 A N U 0 0 7 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MAX
EPTnS F01	ILLIA DAM D Bkg D	ULLIV RHN S 070 G	ILLIA DAM 0 BRG 0	EISTE LAY 0 LAY 0	ISND G	ASTRO SRWN L SAND O	ALLAN SRUN S MSV O	TAMM V ARMN V APAN V AV	54699 50679 5067 5067 5067 5067 5067 5067 5067 5067	CLAY CLAY CLAY	RANKI BRWN S CLAY	-42164 Clay (PE1ST: GREY (0055 + 0055 +	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	NAWXI Stan	40LFF
NGTH U	3 – 2	9 2 O	3 1 3													
				ı		. •						ŧ				
8 0 7 7 7 7				0		60								·		
WATÉ USE	Ŋu	00	00	ST Ú	00	ST 1	00	00	00	00	, U,	- 70 0	00 0	0 DC	000	Ω 0
1001 1120 1230	00:10		01:00	05:10	00:20	02:15	04:00	ÚE:20	00:10	01:10	r£:E0	02:00	02:00)0:TO	03:00	03:00
	er	- -	¢.	Ċ,	ŝ	2.0	m	¢.	Ś	Ś	4	(N	¢	10	10	2
0.8P - VL - EET - EET	0 1	75	18	76	σ	52	20	70	24	92	27	12	89	65		5
	Ś	20	\$ 0	24	5r	29	17	52.	12	32		æ	4 4		FLK	5 Z
HATER -	1100	610ŭ	0012	0032	7700	29Qú	0020	0072	1100	0100	0048 0052	0400	5200	0050	0073	0043
IND OF Ater	я Я	55	я 8	يد بار	ው. ሆ	ત્ર થ	сс Ц	сх ц	<u>م</u> ت	я Х	й П 0. 04	۳. R	ድ ኪ.	а Ц	я Х	£4 ∎.
CSG K UIA W INS W	ЭĈ	Ŷ	30	Ŷ	، Ω	Ċ,	Ŷ	-0	ы С	Ð	¢	ŝ	Ŷ	-0	\$	ŝ
RILLER	9129	1352	3129	1067	0 TO S	5 (7 4	5 ŭ 1 6	2 5 5 7 5 5	3129	1831	9104	1343	4901	5016	9 tuç	1343
0 1 :	11/	6L/-	LL/	166	159	1/40	9/75	8/78	5/75	5170	5/72	2755	1/66	1770	1110	8/54
ET UA	45 06	50 10	÷0 0€,	45 01	0000	60 61	420 03	4 5 5 Ú I	4 9 5 0	475 1	406 6	435 Ú	4 8 5 0	415 1	400 1	415 0
שע שע עני עני	нтр 60 4 90	4 02 20	4 0 8 0 4	4 Cr 4 Cr 4	46 21	0.09	71	00	120	200	140	511	501 501	9 - 1 - 1 - 1 - 1	0 2 5 2 Ù Û	142
UTN Eastin Northi	2771 2771 48899	2771 48900	2771 48896	2773 48896	2760 48912	2757 76754	2780 48956	2781 48961	2774 4694	2768 48934	2761 48932	2766	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	275 2664	270	275
AELL WELL NU	Gh T UN 4854	5329	5554	512	175	50 40	3627	507u	4302	530	3194	°, 27	279	3149	3694	28Ú
те н. Т. 12.	មា រាំ ភាំ ភាំ ភាំ	e	τη.	m	4	, n _,	15	.31	υ 1	36	~1	N	2	ιŋ	ო	ы Л
	.NG	1	<u>~</u>	~	L		~	ł	l.	٢	'n		ŝ	a	σ	° Y)
MUNICIPA CONCESSI CONCESSI	CUNTINUI Com	CON	CUN	C C N	CU ^H	Vun	CUN	CUN	CUN	сси	CON	NGO	CUN	CUN	CUN	NDC

ø

A second strategy of the second

•

`,

													:												•							
0RT มาราช		s t n s	1729 5270		60EY	6867 6867	-	0046		0.055 0		GREY	BRWN	BRWN	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9100		U U U U U L M S N		1200		00590									
N REP TO TO TO TEN		CL∆Y	0005 Sand	ш	2000	002500	00.66	ЧР¢N		כרעג		0005 0002	0000	00.65	0103		SNDY		0500 2137		CL & Y 0 0 6 6 7	20 - T	GREY GRVL		LMSN		0 U S 9	N O N	202	1	11. 1. 1.	
. LETI 18 18 10 10 10 10		7335	CLAY GREY	H RENC	SOFT		9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5602		696Y 0040	0 0 0	50FT	LTCL	LTCL	HARD A 1 2 4		CLAY 0.032	3 2 21 2 31	a R M M S H L F		М М М М N N N N	DSE P1	0750 6867	•	710		MSN			,	0758 0758	
R 'BUL D#N8 TN F KMAT	-	012 12	3 0 0 2 5 0 2 5 0 4 0	U LA	NTO.	LOR N N	ANU	144 G 114 G		144 1020 1020	× ×	140°-	1685	10 01	BLOR 1 OD	EONA -EONA	1000	- 5 - 0	0024	-			0 U 5 3	 	LDR 0		Rer L	L L			LNSN	
TATE TATE TATE		2020	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ANFOR	L LCK	- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ינ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UTHIE	NHS 170	LAY LAY	641 1	LAY 144	nur 1	540	1 4 5 K	PAN PAN PAN		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AHOH	REY AND	ר עי	AY 8	a An An	12 .	ن ب ب	S 1 2 5	9 11	5 8 9 0 0 0 0 0 0 0 0	
00ND 1 H 01 1	- -	125	זטמר	ō, ē	מ	υı	י. נ	10 0. .	5	D L L	20	n .	າ U) E	00	∍ ⊢		5 U	<u></u>	נו כ		C 1-	יז פי	ALKER	CL ND CL	20 I X V	00 00	aLL:10	22	ALLAC		
х С С С С С С С С С С С С С С С С С С С	-			4.0						•														3	5 S	+-	- 4	τ. (2	5		
C SC	- 			0.156	1 1 1			,																								
1 1 1 1 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1	- -				_			60 I		<u> </u>	⊢					0		. 0			-	9										
UNTY T E WA			00 ST	12 00	2			00 21		10	.s U U U					000		0 0 0		0		0 0 0	•	-		U	<i>a</i>					
		-	100	2 4 0 6				* 73 C		w,	0 10:					7 01		5 01:	1 		4 11	4 0	, ,	30 NI		2 0 7	2 2 2					
RLAN TEST RATE	. م ود	5 1	41	2	, ,						Ĩ													:00		• • • •	100 2		:			
HUNB PUNP	1 1 1 1 1 1 1	4 1	40	с ч	2			61 11		20	ι. Γ					30	1	4				4										
NURT STAT LVL		л Н	5 11	5	2			17		15	u U	1				6	•	R C	,	1	5 17	5	•	70								
ATER DUND		0052	0950	0.00	0000			0046		0055	9900	56Tů				00200	1 1 7	2 0 0 C	1 1 1			, 5 U U		4	n 4	、 I	01	4				
3 L 0 C U U U U	TEK F	o:	ಚ		¥			£7.		64	9	د بر				c	4	<u>_</u>	<		ä	ຄ	c	2000	6700		0.559			γsc		
AGE: SG KI	45 WA	v. v)	ч, Ф		۰ ۵			ຍ. ນ		د. ح	4	0				U C f	-		- D		ц.		D	c	¥	,	ĸ				•	
00	11 12 12	89	ۍ ب		4			ci		9		Ŧ				c			-		-		0		e e		о. •0	Ņ				
	JRILL	211	162		212			147		201		5 7 7					°10		4		4 81		5	('n		сь С	ۍ م		ф С		
96,5	11 11 11	/11	174		5175			1.59		11/6	c t	5171					*		***		177		+ 1 / 7		33 37		45	48		- 1 1		
1÷60÷	40 	15 03	50 01		65 T 2			55 03	·	25 0	- t	⊣ n				•	1		2 2 2		25 c	•	T 0.44		121		9752	2747		2/47		
ег:	in Fei	400	4		*	1		41 41 41	1	4	4	200			*	, ,	202	1	4 - 2 - 4		4 0 4 0		5 00		2		õ			1		
UTM	CR THIN TOWNSH	27663 489575	27585 483530		1 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	709 na +		27535		2753		12512				0 7 1	49933	1	46996		27 23	- - -	2142 4293		0 0		5	, °	Ċ,	9	0	
TE EJ	NOTE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	541		540			5 S S		148	-	145				1	2022		187		1803		25.5	ł	63		é7	284	•	ۍ در ۲۰		
SVS	iT I BRIGI	m A	2		5 5			n		n N	•	-				•	יי. הי		4		3 C E	1	34									
ŪÅT Å			Ť.		ጥ			 ,		¢		ጥ			•		ſÞ.		<u>.</u> ,		ି	1	0									
PACIT PACIT Sion	11 NG		<u>.</u>					•											~		-	•										
WATER NUNICI CONCES	ETC	CUN	CON		CON			сом		CON		CON					CON		CDN		CON		CON		9 P		dd	đđ		6	Ξ	

¢.

ឡាំង 🕴

C)

•

TABLE A-3

NEW WATER WELL A027288 DESCRIPTION

.

RI-COUNTY WELL D		FAX NO. :6134	750110		Sep. 07 2005 11:24AM P5	
Ontario 🖁	inistry of we	ell Tag Numbr	A 0272	88	Well Recor Regulation 903 Ontario Water Resources A	d Ic:
ions for Completing	Form	A027	288		page of	
use in the Province of jections must be com	f Ontario only. This de pleted in full to avoid o	ocument is a perm lelays in processir	anent legal o ig. Further ins	locument. Ple structions and	ease retain for future reference. explanations are available on the back of this form ent Coordinator at 416-235-6203.	n.
stions regarding comp netre measurements se print clearly in blue	shall be reported to or black ink only.	1/10 th of a metre.		, , , , , , , , , , , , , , , , , , ,	Ministry Use Only	
ner's information a	nd Location of Wel	I Information	MUN	Street Number	Name RB of Concession)	<u> </u>
e RANDY	Last MENICHO	2 2 2 2 2 2	22 Q	ince Postal	R RO RR#2 Code Telephone Number (include area co	de
TRUMBERLAN Well Location (County)	N CAD	PRINGTON TON	<u>On</u> Naship	tario ; <u>nor</u>	Lot Concession	
RTHUMBERL	AND	·		2 GHTON	Site/Compartment/Block/Tract etc.	
Number/Name	er RD.	RRZZ		RINGTON		
ding NAD Zone	277538	H892477	MAGELL	AN .	Differentiated, specify	_
Overburden and Be	drock Materials (see	e instructions)	· · · ·	General	Description Depth Metre	s .
olour Most common in		C.Dalk				\$
IN MAR SAN	SAND	GRAVEL	•••	• • • • • • • • • • • • • • • • • • • •	6.7 9.1	ų
IN FINE SAT	D SUST				9.(4) \9.1	51
UN SAND	GRAVE	L	· · · ·		19.81 20.4	KZ 🛛
NI CLAY	GRAVE	L, SAND			78.42.74	<u>ୋ</u>
on SAND	GRAV	ei	<u> </u>	· · · · ····	24.68 57_	ক
· · · · ·	• • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·	
				·		• 6.
Hole Diametar		Construction Rec	brd		Test of Well Yield	
Metres Diameter	Inside diam Material	Wall	Depth	Motres	Pumping test method Draw Down Recovery	evel
(10 21 91	Centinatios	centimetres	From	То	SUBMERSIBLE min Metres min Metre	85
39 11 16 82		Casing			(metres) '38.71 Level 32.51	
2 2 2 2 18.04				37 07	(iitres/min) 37.85	
Water Record	Gelvenized	-41/	- ~401	51.91	Duration of pumping 2 32 67 2 32	31
nd Kind of Water	Daj Steel Fib	reglass	· · · · · ·		Final water level end 3 32.67 3 32.	31
I PKI Fresh - L. Sulphur Salty Minerals	12 A Getventzed	1000 2477	37.03	58.1	Recommended pump 4 32 67 4 32	<u></u>
		veglass			type Shellow & Deep	
Satty Minerala		ncrete	i.	•	depthmetres	<u></u>
Erseb i Sulobut		Screen			Recommended pump 10 32.67 10 32.	31
Saily Minerals	Outside	oregiass Slot No.			(litres/min) 15	
E water was			38.1	39.01	N/A(iitree/min) 25 25 30	<u> </u>
r and sediment free	13.97 Gelvanized	60			ued, give reason. 40	
(, specify CLOUDY	· · · · · · · · · · · · · · · · · · ·	No Casing of act	-		N/A 50 V 50 V	-31
nd Myes No	Open hole			<u> </u>	Location of Well	· ·
Plugging and Se	aling Record	Annular space	me Placed	In diagram belo	w show distances of well from road, lot line, and building.	ŀ
et at - Metres Moterial and ty	pe (bentonite slutty, neat cerni	en suny) etc. (cub	ic metres)	Indicate north b	у апож. ТА	l i
6.10 BENT	FAITE SLURI	<u>ex</u>	10		8 = 300m	ا
				1	T TREAS	sov.

	∇ ∇				▽,-	
				OLD LUNG		
	Method of Con	struction			VER RA	
Cable Tool Rotary (convention Rotary (reverse)	Rotery (air) al) Air percussion Boring	Diamond Jetting Driving	(_] Digging [_] Other	· . ·		
	Water U		C) Other			
Domestic Stock	Industrial	Not used	ditioning	Audit No. Z	29298	Date Well Completed 2655 081 Date Defivered YYY MM
Ingabon	Final Status	OT WEIL	Abandoned, (Other)	Was the well o	wher's information	2005 10715
Water Supply Observation well Test Hole	Recharge well Abandoned, insufficient supp Abandoned, poor quality Well Contractor/Techr	Unthished by Dewatering Replacement wa alcien Information Well C	ontractor's Licence No.	Data Source	Ministry	Vise Only Contractor
me of Wall Contra	The well DR	ULING	1020	Date Received		Date of inspectors 4411
Isiness Address (threet name, number, city etc.)	ST BRIGH	TAN echnician's Licence No.	Remarks	·łłł -	Well Record Number
A DE DE DE DE DE DE DE DE DE DE DE DE DE	Cient Contractor	Date Su	ibmitted yvyy MM 00	11		
	N Low Contra	actor's Copy 🗍 Minis	try's Copy 🗌 Well O	wner's Copy	с	ette formule est disponible en ira

APPENDIX B

GROUNDWATER DETAILS

\triangleright	MONITOR CONSTRUCTION DETAILS	TABLE B-1
۶	GROUNDWATER ELEVATIONS	TABLE B-2
۶	HISTORICAL GROUNDWATER DEPTH	FIGURE B-1
۶	HISTORICAL STATIC GROUNDWATER LEVELS	FIGURE B-2

TABLE B-1 MONITOR CONSTRUCTION DETAILS HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO

Monitor	Screen	Depth	Filter	Pack	S	eal
Designation	Тор	Bottom	Тор	Bottom	Тор	Bottom
	m bgl	m bgl	m bgl	m bgl	m bgl	m bgl
BH05-2	9.2	12.2	9.2	12.2	0	0.9
BH05-18	25.9	29.0	25.6	28.9	0	25.6
BH05-19	25.3	28.4	24.7	28.4	0	24.7
BH05-20	3.0	4.6	2.7	4.6	0	2.7
BH06-1	8.6	10.1	8.4	10.3	0	8.4

NOTE:

"m bgl" indicates metres below ground level.

ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO **GROUNDWATER ELEVATIONS** HYDROGEOLOGICAL STUDY **TABLE B-2**

Monitor	Measurement	Ground				Histo	ric Static V	Vater Leve	els			
Designation	Point	Elevations	4- 7-Oct-05	20-Oct-05	26-Oct-05	31-Jan-06	23-Mar-06	30-Mar-06	21-Apr-06	4-Dec-06	9-Apr-07	9-May-08
	m asl	m asl	m asl	m asl	m asl	m asl	m asl	m asl	m asl	m asl	m asl	m asl
BH05-2	185.72	184.78	173.87	173.87	173.84	173.60	173.95	173.96	174.03	174.04	174.31	174.74
BH05-18	191.53	190.96	166.76	166.74	166.69	166.53	166.49	166.52	166.60	166.74	167.03	166.78
BH05-19	185.43	184.98	159.52	159.53	159.49	159.45	159.38	159.41	159.44	159.39	159.58	159.82
BH05-20	183.59	182.81	dry	dry	dry	182.04	182.39	182.36	182.23	182.54	182.54	182.71
BH06-1	183.41	182.61						174.77	174.86	174.93	175.13	175.62

NOTE:

"m asl" indicates metres above sea level.

FIGURE B-1 HISTORICAL GROUNDWATER DEPTH ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY

H:/Proj/05/1777/00/Tech/TABLES/GWElevations and monitor construction details.xis

FIGURE B-2 HISTORICAL STATIC GROUNDWATER LEVELS ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY

(Iss m) SNOITAVAJA

APPENDIX C

CLIMATIC AND SUBCATCHMENTS DETAILS

>	CLIMATIC WATER BUDGET – 1971-2000	TABLE C-1
\triangleright	CANADIAN CLIMATE NORMALS – 1971-2000	TABLE C-2
8	PRIMARY DATA FOR SITE WATER BALANCE	TABLE C-3

TABLE C-1 CLIMATIC WATER BUDGET: 1971 - 2000 HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON P

ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO

				Thornthwa	ite (1948)						Thornt	hwaite and	H Mather (19:	57)	
Month	Mean Temperature (°C)	Heat Index	Potential Evapo- transpiration	Daylight Correction Value	Adjusted Potential Evapo-	Total Precipitation (mm)	Surplus (mm)	Deficit (mm)	PPT - PET (mm)	Accumulated Potential Water Loss (mm)	Storage (mm) (ST)	Change in Soil Moisture	Actual Evapo- transpiration (mm)	Moisture Deficit (mm)	Unadjusted Moisture Surplus
lanuary	-7.1	0.0	0.0	0.7325	0.0	74	74.0	0.0	74.0	0.0	259.2	0.0	0.0	0.0	74.0
February	-5.9	0.0	0.0	0.8525	0.0	56.4	56.4	0.0	56.4	0.0	315.6	0.0	0.0	0.0	56.4
March	-0.6	0.0	0.0	0.9825	0.0	73.3	73.3	0.0	73.3	0.0	388.9	0.0	0.0	0.0	73.3
April	6.7	1.6	31.3	1.1300	35.4	74.6	39.2	0.0	39.2	0.0	100.0	0.0	35.4	0.0	39.2
May	13.7	4.6	67.0	1.2600	84.4	74.3	0.0	10.1	-10.1	-10.1	90.0	-10.0	84.3	0.0	0.0
June	18.7	7.3	93.2	1.3325	124.2	70.9	0.0	53.3	-53.3	-63.4	52.0	-38.0	108.9	15.3	0.0
July	21.6	9.1	108.6	1.3050	141.8	52.7	0.0	89.1	-89.1	-152.5	21.0	-31.0	83.7	58.1	0.0
August	20.6	8.5	103.3	1.1950	123.5	80.7	0.0	42.8	-42.8	-195.3	14.0	-7.0	87.7	35.8	0.0
September	15.9	5.7	78.5	1.0550	82.8	86.4	3.6	0.0	3.6	0.0	18.6	4.6	81.8	1.0	0.0
October	9.3	2.6	44.4	0.9075	40.3	76	35.7	0.0	35.7	0.0	54.3	35.7	40.3	0.0	0.0
November	3.2	0.5	14.3	0.7775	11.1	87.3	76.2	0.0	76.2	0.0	100.0	45,7	11.1	0.0	30.5
December	-3.5	0.0	0.0	0.7050	0.0	85.2	85.2	0.0	85.2	0.0	185.2	0.0	0.0	0.0	85.2
TOTALS (mn	(I	39.9			643.5	891.8	443.6	195.3	248.3	-421.3	1598.8	0.0	533.2	110.1	358.6

NOTES:

1) Water budget adjusted for latitude and daylight.

mm

358.6

TOTAL MOISTURE SURPLUS

mm

248.3

Total Water Surplus

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Data from the Belleville Climatological Station located at latitude 44° 9' N, longitude 77° 23' W.

4) Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted potential evapotranspiration.

5) Total Moisture Surplus (Thornthwaite and Mather, 1957) is calculated as total precipitation minus actual potential evapotranspiration.

TABLE C-2 CANADIAN CLIMATE NORMALS: 1971-2000 HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC.(CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO BELLEVILLE

0ct 9.3 1.5		Nov 3.2	Nov 3.2 6.7 6.7	Nov D 3.2 -5 6.7 0 6.7 0 22.2 1(Nov Dec 3.2 -3.5 1.4 3 6.7 0.4 -0.2 -7.3 22.2 16.5 38/07 1982/07	Nov Dec 1 3.2 -3.5 -3.5 1.4 3 -0.4 6.7 0.4 -0.2 -0.2 -7.3 -7.3 22.2 16.5 -34.4	Nov Dec Ye 3.2 -3.5 7. 3.2 -3.5 7. 1.4 3 0.1 6.7 0.4 12 -0.2 -7.3 3. 6.7 0.4 12 -0.2 -7.3 3. 38/07 1982/03 3. 22.2 -34.4 3. 38/07 1982/03 1871/21	Nov Dec Year 3.2 -3.5 7.7 3.2 -3.5 7.7 1.4 3 0.8 6.7 0.4 12.2 -0.2 -7.3 3.2 -0.2 -7.3 3.2 22.2 16.5 34.4 22.2 -34.4 735.7 36/30 1871/21 735.1	Nov Dec Year 3.2 -3.5 7.7 3.2 -3.5 7.7 1.4 3 0.8 6.7 0.4 12.2 -0.2 -7.3 3.2 -0.2 -7.3 3.2 22.2 16.5 -34.4 38/07 1982/03 1871/21 22.2 -34.4 735.5 136/30 1871/21 -34.4 735.7 43.4 735.5 71.5 41.8 155.7
2.9 ep		ep Oct Nov 5.9 9.3 3.2 1.2 1.5 1.4	ep Oct Nov 5.9 9.3 3.2 1.2 1.5 1.4 0.4 13.5 6.7 1.3 5.1 -0.2	ep Oct Nov D 5.9 9.3 3.2 -5 5.9 9.3 3.2 -5 1.2 1.5 1.4 -7 0.4 13.5 6.7 0 1.3 5.1 -0.2 -7 35 28.3 22.2 1	ep Oct Nov Dr 5.9 9.3 3.2 -3 -3 1.2 1.5 1.4 5 -3 0.4 13.5 6.7 0 0 1.3 5.1 -0.2 -7 3 355 28.3 22.2 16 7 357 1877/01 1938/07 198	ep Oct Nov De 5.9 9.3 3.2 -3 -3 5.9 9.3 3.2 -3 -3 1.2 1.5 1.4 -6 -6 0.4 13.5 6.7 0 -7 35 2.1 -0.2 -7 -7 35 2.1 -0.2 7 16 35 2.1 -0.2 16 7 35 28.3 22.2 16 16 35/02 1877/01 1938/07 198 17 1.7 -10 -22.2 -3 -3	ep Oct Nov De 5.9 9.3 3.2 -3 5.9 9.3 3.2 -3 1.2 1.5 1.4 5 0.4 13.5 6.7 0 1.3 5.1 -0.2 -7 35 28.3 22.2 16 53/02 1877/01 1938/07 198 1.7 -10 -22.2 -3 1.7 -10 -22.2 -3 1.77 1933/26 1936/30 187	ep Oct Nov De 5.9 9.3 3.2 -3 5.9 9.3 3.2 -3 1.2 1.5 1.4 5 0.4 13.5 6.7 0 1.3 5.1 -0.2 -7 35 28.3 22.2 16 35 28.3 22.2 16 35/02 1877/01 1938/07 198 51/23 1933/26 1936/30 187 47/23 1933/26 1936/30 187 47/23 1933/26 1936/30 187	ep Oct Nov De 5.9 9.3 3.2 -3 5.9 9.3 3.2 -3 1.2 1.5 1.4 5 0.4 13.5 6.7 0 1.3 5.1 -0.2 -7 35 28.3 22.2 16 35 28.3 22.2 16 35 28.3 22.2 16 37/02 1877/01 1938/07 198 1.7 -10 -22.2 -3 1.7 -10 -22.2 -3 1.7/23 1933/26 1936/30 187 6.4 75.4 75.7 4 0 0.6 11.5 41
15.9	Sep 0c	15.9 9.0 1.2 1.5	15.9 9.3 1.2 1.5 20.4 13 11.3 5.7	15.9 9.3 1.2 1.5 20.4 13. 11.3 5.1 35 28.	15.9 9.3 1.2 1.5 20.4 13. 11.3 5.1 35 28. 26 1953/02 1877	15.9 9.3 1.2 1.1 20.4 13. 11.3 5.1 35 28. 36 1953/02 1877 20.4 1.7 -1(15.9 9.3 1.2 1.1 20.4 13. 21.3 5.1 35 28. 35 28. 26 1953/02 1877 01 -1.7 -1(7) 01 1933 1933	15.9 9.3 1.2 1.1 20.4 13. 21.3 5.1 35 28. 36 1953/02 1877 26 1953/02 1877 26 1953/02 1877 26 1953/02 1877 27 -1.7 -1(7) 20+ 1947/23 1933 28.4 75. 86.4	15.9 9.3 1.2 1.5 20.4 13. 20.4 13. 35 28. 36 1953/02 1877 0+ 1947/23 1933 0+ 1947/23 1933 0 0 0.6
•	20.6	1,1	1.1 25.4 15.7	1.1 25.4 15.7 36.1	1.1 25.4 15.7 36.1 36.1	1.1 25.4 15.7 36.1 36.1 3.3 3.3	1.1 25.4 15.7 36.1 36.1 39 1948/26 3.3 0+ 1934/30+	1.1 25.4 15.7 36.1 39 1948/26 3.3 0+ 1934/30+ 80.7	1.1 25.4 15.7 36.1 39 1948/26 3.3 0+ 1934/30+ 80.7
	21.6		26.6 16.6	26.6 16.6 40	26.6 16.6 40 30 1936/05	26.6 16.6 30 1936/05 6.1	26.6 16.6 40 30 1936/05 6.1 01 1929/20	26.6 16.6 40 30 1936/05 6.1 01 1929/20 52.7	26.6 16.6 30 1936/05 01 1929/20 1 1929/20 52.7 0
_	18.7		23.6 13.7	23.6 13.7 35.6	23.6 13.7 35.6 7 1964/30	23.6 13.7 35.6 7 1964/30 0	23.6 13.7 35.6 7 1964/30 0 5 1945/01	23.6 13.7 35.6 7 1964/30 5 1945/01 70.9	23.6 13.7 35.6 7 1964/3C 5 1945/01 70.9 0
	13.7		18.7 8.7	18.7 8.7 35	18.7 8.7 35 1962/17	18.7 8.7 35 1962/17 -7.2	18.7 8.7 35 1962/17 -7.2 1956/05	18.7 8.7 35 35 1962/17 -7.2 1956/05 73.9	18.7 8.7 35 35 1962/17 -7.2 1956/05 73.9 0.4
	Apr 6.7		211.4	11.4 2 29	11.4 2 29 1990/25	11.4 2 29 1990/25 -17.2	11.4 2 29 29 1990/25 -17.2 1923/01	11.4 2 29 1990/25 -17.2 1923/01 67.7	11.4 2 29 1990/25 -17.2 1923/01 67.7 6.9
N N	Mar -0.6	7.2	3.8	2.2 3.8 -5 23	2.2 3.8 -5 23 1998/28+	22 3.8 -5 -1998/28+ -29.4	2.2 3.8 -5 -5 23 1998/28+ -29.4 1948/06	2.2 3.8 -5 -5 1998/28+ -29.4 1948/06 47.9	22 3.8 -5 -5 -23 1998/28+ -29.4 1948/06 47.9 25.4
2 V	-5.9	2.0	-1.4 -10.3	 -1.4 -10.3 13	-1.4 -1.4 -10.3 13 1984/24+	 -1.4 -10.3 13 13 1384/24+ -39.4	 -1.4 -10.3 13 13 1384/24+ -39.4 1934/09	 -1.4 -1.3 -10.3 13 1384/24+ -39.4 1934/09 28	 -1.4 -10.3 13 1984/24+ -39.4 1934/09 28.4 28.4
- i	6150689 Jan -7.1	;	-11.5	-2.6 -11.5 13.9	-2.6 -11.5 13.9 1967/25	-2.6 -11.5 13.9 1967/25 -37.8	-2.6 -11.5 13.9 13.9 1967/25 -37.8 1942/10	-2.6 -11.5 -11.5 13.9 1967/25 -37.8 1942/10 33.2	-2.6 -11.5 -11.5 -13.9 13.9 -37.8 -37.8 1942/10 33.2 40.7
	Climate ID: Temperature: verage (*C)		tximum (°C) nimum (°C)	Aaximum (°C) Ainimum (°C) ne Maximum (°C)	Maximum (°C) Minimum (°C) me Maximum (°C) (yyyy/dd)	/ Maximum (°C) / Minimum (°C) eme Maximum (°C) ((yyyy/dd) eme Minimum (°C)	y Maximum (°C) y Minimum (°C) reme Maximum (°C) e (yyyy/dd) reme Minimum (°C)	ly Maximum (°C) ly Minimum (°C) reme Maximum (°C) e (yyyy/dd) reme Minimum (°C) te (yyyy/dd) hfall (mm)	Iy Maximum (°C) Ily Minimum (°C) reme Maximum (°C) te (yyyy/dd) treme Minimum (°C) te (yyyy/dd) infall (mm) ovfall (cm)

NOTE:

This table was adapted from the on-line resources of Environment Canada.

TABLE C-3 PRIMARY DATA FOR SITE WATER BALANCE HYDROGEOLOGICAL STUDY ST. MARYS CEMENT INC. (CANADA) CODRINGTON PROPERTY TOWN OF BRIGHTON, NORTHUMBERLAND, ONTARIO

	TOTAL	WOODED	OPEN
	(m²)	(m²)	(m²)
WETLAND CATCHMENT AREA			
1A	316617.7	125384.2	191233.5
1B	10375.5	0	10375.5
1C	6612	6612	0
1D	8692	6995	1697
1E	8854.6	1972.1	6882.5
1F	42008.6	22893.4	19115.2
1G	4662.5	1053.9	3608.6
Wetland/pond	7,297	0	7,297
Subtotal	405119.9	164910.6	240209.3
COLD CREEK CATCHMENT AREA			
2A	199295.9	85731.9	113564
2B	45779	8088.9	37690.1
Subtotal	245074.9	93820.8	151254.1
MARSH CREEK CATCHMENT AREA			
3A	6460	1362.8	5097.2
3B	16746	6879.6	9866.4
3C	41831	9709.6	32121.4
3D	14567	6781	7786
3E	25668.6	20128	5540.6
3F	7686	4545.5	3140.5
3G	250600	183338.8	67261.2
3H	41764	38571.8	3192.2
Subtotal	405322.6	271317.1	134005.5
SITE TOTAL	1055517.4	530048.5	525468.9
EXTRACTION ZONE			
WESTERN PARCEL	548042.2		
EASTERN PARCEL	259454.6		
TOTAL EXTRACTION ZONE	807496.8		

NOTES:

1) 'm²' means square metre.

2) 3A - designation of subcatchments.